The Most Inn vative Institute

 Resonance Educating for better tomorrowTime: 3 Hrs. समय: 3 घंटे
Max. Marks : 180 अधिकतम अंक : 180

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose. कृपया इन निर्देशों को ध्यान से पढ़ें। आपको 5 मिनट विशेष रूप से इस काम के लिए दिये गये हैं।

INSTRUCTIONS (निर्देश)

A. General सामान्य :

1. This booklet is your Question Paper. Do not break the seal of the booklet before being instructed to do so by the invigilators.
यह पुस्तिका आपका प्रश्नपत्र है। इसकी मुहर तब तक न तोडें जब तक निरीक्षकों के द्वारा इसका निर्देश न दिया जाये।
2. The question paper CODE is printed on the left hand top corner of this sheet and on the back cover page of this booklet.
प्रश्न-पत्र का कोड (CODE) इस पृष्ठ के ऊपरी बाएँ कोने और इस पुस्तिका के पिछले पृष्ठ पर छपा है।
3. Blank spaces and blank pages are provided in the question paper for your rough work. No additional sheets will be provided for rough work.
कच्चे कार्य के लिये खाली पृष्ठ और खाली स्थान इसपुस्तिका में ही है। कच्चे कार्य के लिए कोई अतिरिक्त कागज नहीं दिया जायेगा।
4. Blank papers, clipboards, log tables, slide rules, calculators, cameras, cellular phones, pagers and electronic gadget of any kind are NOT allowed inside the examination hall.
कोरे कागज, क्लिप बोर्ड, लॉग तालिका, स्लाइडरूल, कैल्कुलेटर, कैमरा, सेलफोन, पेजर और किसी प्रकार के इलेक्ट्रॉनिक उपकरण परीक्षा कम में अनुमती नहीं है।
5. Write your Name and Roll number in the space provided on the back cover of this booklet. इस पुस्तिका के पिछले पृष्ठ पर दिए गए स्थान में अपना नाम और रोल नम्बर लिखिए।
6. Answers to the questions and personal details are to be filled on an Optical Response Sheet, which is privided separately. The ORS is a doublet of two sheets - upper and lower, having identical layout. The upper sheet is a machine-gradable Objective Response Sheet (ORS) which will be collected by the invigilator at the end of the examination. The upper sheet is designed in such a way that darkening the bubble with a ball point pen will leave an identical impression at the corresponding place on the lower sheet. You will be allowed to take away the lower sheet at the end of the examination. (see Figure-1 on the back cover page for the correct way of darkening the bubbles for valid answer.)
प्रश्नों के उत्तर और अपनी व्यक्तिगत जानकारियाँ एक ऑप्टीकल रिस्पांस शीट, जो अलग से दिया जाएगा, पर भरी जायेगी। ओ.आर.एस. समरूप विन्यास वाली ऊपरी और निचली दो शीटों का युग्म है। ऊपरी पृष्ठ मशीन-जाँच ऑब्जेक्टिव रिस्पासं शीट (ओर.आर.एम., ORS) है, जो निरीक्षक द्वारा वापस ले ली जायेगी। ऊपरी पृष्ठ इस प्रकार डिजाईन किया गया है कि बुलबुले को पेन से काला करने पर यह निचले पृष्ठ के संगत स्थान पर समरूप निशान छोड़ता है। आप निचले पृष्ठ को परीक्षा समाप्ति पर अपने साथ ले जा सकते हैं। (देखें : पिछले पृष्ठ आवरण पर चित्र-1 वैध उत्तर के लिए बुलबुले को भरने का सही तरीका)
7. Use a black ball point pen only to darken the bubbles on the upper original sheet. Apply sufficient pressure so that the impression is created on the lower sheet. See Figure-1 on the back cover page for appropriate way of darkening the bubbles for valid answers.
ऊपरी मूल पृष्ठ के बुलबुलों (BUBBLES) को केवल काले बॉल प्वाइंट कलम से काला करें। इतना दबाव डालें कि निचले डुप्लीकेट पृष्ठ पर निशान बन जाये। (देखें : पिछले पृष्ठ आवरण पर चित्र-1 वैद्य उत्तर के लिए बुलबुले को भरने का सही तरीका)

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | Email : contact@resonance.ac.in
This solution was download from Resonance JEE ADVANCED 2014 Solution portal

ओ.आर.एस. (ORS) या इस पुस्तिका में हेर-फेर/विकृति न करें।
9. On breaking the seal of the booklet check that it contains all the $\mathbf{6 0}$ questions and corresponding answer choices are legible. Rad carefully the instruction printed at the beginning of each section.
इस पुस्तिका की मुहर तोड़ने के पश्चात् कृपया जाँच लें कि इसमें सभी $\mathbf{6 0}$ प्रश्न और उनके उत्तर विकल्प ठीक से पढ़े जा सकते हैं। सभी खंडों के प्रारंभ में दिये हुए निर्देशों को ध्यान से पढ़ें।
B. Filling the right part of the ORS

ओर.आर.एस (ORS) के दाएँ भाग को भरना।
10. The ORS also has a CODE printed on its left and right parts.

ओ.आर.एस के दाएँ और बाएँ भाग में भी कोड छपे हुए हैं।
11. Verify that the CODE printed on the ORS (on both the left and right parts) is the same as that on this booklet and put your signature in the Box designated as R4.
सुनिश्चित करें कि ओ.आर.एस. (बाएँ और दाएँ दोनों भागों) पर छपा कोड इस पुस्तिका पर छपे कोड के समान ही है और निर्दिष्ट बॉक्स R4 में अपने हस्ताक्षर करें।
12. IF THE CODES DO NOT MATCH, ASK FOR A CHANGE OF THE BOOKLET/ORS AS APPLICABLE.

यदि कोड भिन्न हैं तो इस पुस्तिका/ओ.आर.एस. को यथानुसार बदलने की माँग करें।
13. Write your Name, Roll No. and the name of centre and sign with pen in the boxes provided on the upper sheet of ORS. Do not write any of the anywhere else. Darken the appropriate bubble UNDER each digit of your Roll No. in such way that the impression is created on the bottom sheet. (see example in Figure 2 on the back cover)
अपना नाम, रोल नं. और परीक्षा केन्द्र का नाम ओ.आर.एस. के ऊपरी पृष्ठ में दिये गये खानों में कलम से भरें और अपने हस्ताक्षर करें। इनमें से कोई भी जानकारी कही और न लिखें। रोल नम्बर के हर अंक के नीचे अनुरूप बुलबुले (BUBBLE) को इस तरह से काला करें कि निचले पृष्ठ पर भी निशान बन जाए। (देखें उदाहरण : पिछले पृष्ठ पर चित्र-2)
C. Question Paper Format

The question paper consists of three parts (Physics, Chemistry and Mathematics). Each part consists of two sections.
प्रश्न-पत्र का प्रारूप
इस प्रश्न-पत्र के तीन भाग (भौतिक विज्ञान, रसायन विज्ञान और गणित) हैं। हर भाग के दोंड हैं।
14. Section 1 contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE THAN ONE are correct.
खंड 1 में 10 बहुविकल्प प्रश्न हैं। हर प्रश्न में चार विकल्प $(A),(B),(C)$ और (D) हैं जिनमें से एक या एक से अधिक सही हैं।
15. Section 2 contains 10 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9 (both inclusive).
खंड 2 में 10 प्रश्न हैं। प्रत्येक प्रश्न का उत्तर 0 से 9 तक (दोनों शामिल) के बीच का एकल अंकीय पूर्णांक है।
D. Marking Scheme

अंकन योजना
16. For each question in Section 1, you will be awarded 3 marks. If you darken all the bubble(s) corresponding to the correct answer(s) and zero mark. If no bubbles are darkened. No negative marks will be answered for incorrect answer in this section.
खंड 1 में हर प्रश्न में सभी सही उत्तर (उत्तरों) वाले बुलबुले (बुलबुलों) को काला करने पर 3 अंक प्रदान किये जायेगें और कोई भी बुलबुला काला नहीं करने पर शून्य अंक प्रदान किय जायेगें। इस खंड के प्रश्नों में गलत उत्तर देने पर कोई ऋणात्मक अंक नहीं दिये जायेगें।
17. For each question in Section 2, you will be awarded 3 marks if you darken only the bubble corresponding to the correct answer and zero mark if no bubble is darkened. No negative marks will be awarded for incorrect answer in this section.
खंड $\mathbf{2}$ में हर प्रश्न में सभी सही उत्तर वाले बुलबुले को काला करने पर $\mathbf{3}$ अंक प्रदान किये जायेगें और कोई भी बुलबुला काला नहीं करने पर शून्य अंक प्रदान किय जायेगें। इस खंड के प्रश्नों में गलत उत्तर देने पर कोई ऋणात्मक अंक नहीं दिये जायेगें।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | Email : contact@resonance.ac.in
This solution was download from Resonance JEE ADVANCED 2014 Solution portal

PART - I : PHYSICS

Section-1 : (One or More than one options correct Type)

This section contains 10 multipole choice questions. Each questions has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct

खण्ड़-1: (एक या एक से अधिक सही विकल्प प्रकार)
इस खण्ड में 10 बहुविकल्प प्रश्न है। प्रत्येक प्रश्न में चार विकल्प $(A),(B),(C)$ और (D) हैं, जिनमें से एक या एक से अधिक सही है।

1. Heater of electric kettle is made of a wire of length L and diameter d. It takes 4 minutes to raise the temperature of 0.5 kg water by 40 K . This heater is replaced by a new heater having two wires of the same material, each of length L and diameter 2d. The way these wires are connected is given in the options. How much time in minutes will it take to raise the temperature of the same amount of water by 40K?
(A) 4 if wires are in parallel
(B) 2 if wires are in series
(C) 1 if wires are in series
(D) 0.5 if wires are in parallel.

विद्युत केतली का हीटर L लम्बाई तथा d व्यास वाले एक तार से बना है। इससे 0.5 kg जल के तापमान में 40 K की वृद्धि करने के लिए 4 मिनट का समय लगता है। इस हीटर के स्थान पर एक नया हीटर उपयोग में लाया जाता है जिसमें L लम्बाई तथा 2 d व्यास वाले उसी पदार्थ के दो तार लगे है। इसी समान मात्रा के जल के तापमान में 40 K की वृद्धि करने में कितने मिनट लगेंगे। तारों के संयोजन की विधि विकल्पों में दी गई है।
(A) 4 यदि दोनों तार समान्तर में है।
(B) 2 यदि दोनों तार श्रेणी (series) में हैं।
(C) 1 यदि दोनों तार श्रेणी में है।
(D) 0.5 यदि दोनों तार समान्तर में है।

Ans. (B), (D)
Sol In given Kettle $R=\rho \frac{L}{\pi\left(\frac{d}{2}\right)^{2}}=\frac{4 \rho L}{\pi d^{2}}$

$$
P=\frac{V^{2}}{R}
$$

In second Kettle $R_{1}=\rho \frac{L}{\pi d^{2}} \quad R_{2}=\frac{\rho L}{\pi d^{2}}$

$$
\text { So } \quad R_{1}=R_{2}=\frac{R}{4}
$$

If wires are in parallel equivalent resistance

$$
R_{P}=\frac{R}{8}
$$

then power $P_{P}=8 P$
so it will take 0.5 minute
If wires are in series equivalent resistance

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

This solution was download from Resonance JEE ADVANCED 2014 Solution portal

$$
R_{S}=\frac{R}{2}
$$

then power $P_{s}=2 P$
so it will take 2 minutes
दी गई केतली में $R=\rho \frac{L}{\pi\left(\frac{d}{2}\right)^{2}}=\frac{4 \rho L}{\pi d^{2}}$

$$
P=\frac{V^{2}}{R}
$$

दूसरी केतली में

$$
\mathrm{R}_{1}=\rho \frac{\mathrm{L}}{\pi \mathrm{~d}^{2}}
$$

$$
\mathrm{R}_{2}=\frac{\rho \mathrm{L}}{\pi \mathrm{~d}^{2}}
$$

$$
\text { So } \quad R_{1}=R_{2}=\frac{R}{4}
$$

यदि तार समांतर क्रम में है तब तुल्य प्रतिरोध

$$
R_{P}=\frac{R}{8}
$$

तब शक्ति $P_{P}=8 P$
अतः लिया गया समय 0.5 मिनट
यदि तार श्रेणी क्रम में है तब तुल्य प्रतिरोध

$$
R_{s}=\frac{R}{2}
$$

तब शक्ति $P_{s}=2 P$
अतः लिया गया समय 2 मिनट
2. One end of a taut string of length 3 m along the x-axis is fixed at $x=0$. The speed of the waves in the string is $100 \mathrm{~m} / \mathrm{s}$. The other end of the string is vibrating in the y-direction so that stationary waves are set up in the string. The possible waveform(s) of these stationary waves is (are)
x-दिशा के अनुदिश $3 m$ लम्बाई की एक तनित डोरी का एक सिरा $x=0$ पर जड़ित (fixed) है। डोरी में तरंग की गति $100 \mathrm{~m} / \mathrm{s}$ है। डोरी का दूसरा सिरा y दिशा के अनुदिश इस प्रकार कम्पन्न कर रहा हैं कि डोरी में अप्रगामी तरंगें बन रही है। इन अप्रगामी तरंगों के संभावित तरंगरूप (wavesform) हैं/है।
(A) $y(t)=A \sin \frac{\pi x}{6} \cos \frac{50 \pi t}{3}$
(B) $y(t)=A \sin \frac{\pi x}{3} \cos \frac{100 \pi t}{3}$
(C) $y(t)=A \sin \frac{5 \pi x}{6} \cos \frac{250 \pi t}{3}$
(D) $y(t)=A \sin \frac{5 \pi x}{2} \cos 250 \pi t$

Ans. (A), (C), (D)

Resonance Eduventures Pvt. Ltd.

Sol. $\quad V=100 \mathrm{~m} / \mathrm{s}$

Node
Possible modes of vibration सम्भव कम्पन की विधा

$$
\begin{aligned}
& \ell=(2 n+1) \frac{\lambda}{4} \\
& \lambda=\frac{12}{(2 n+1)} m \\
& k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{12 /(2 n+1)}=\frac{(2 n+1) \pi}{6} \\
& \omega=v k=100(2 n+1) \frac{\pi}{6}=\frac{(2 n+1) 50 \pi}{3} \\
& \text { if यदि } \quad n=0 \quad k=\frac{\pi}{6} \\
& n=1 \quad k=\frac{5 \pi}{6} \quad \omega=\frac{50 \pi}{3} \\
& n=7 \quad k=\frac{5 \pi}{2} \quad \omega=\frac{250 \pi}{3} \\
& n=250 \pi
\end{aligned}
$$

3. In the figure, a ladder of mass m is shown leaning against a wall. It is in static equilibrium making an angle θ with the horizontal floor. The coefficient of friction between the wall and the ladder is μ_{1} and that between the floor and the ladder is μ_{2}. The normal reaction of the wall on the ladder is N_{1} and that of the floor is N_{2}. If the ladder is about to slip, then

द्रव्यमान m वाली एक सीढ़ी दीवार के सहारे तिरछी खड़ी है, जैसा चित्र में दर्शाया गया है। क्षैतिज फर्श से θ कोण बनाते हुए यह स्थैतिक साम्यावस्था में है। दीवार व सीढ़ी के बीच घर्षण गुणांक μ_{1} है। तथा फर्श व सीढ़ी के बीच घर्षण गुणांक μ_{2} है। दीवार द्वारा सीढ़ी पर लगाया गया अभिलम्बित प्रतिक्रिया बल N_{1} तथ फर्श द्वारा सीढ़ी पर लगाया गया अभिलम्बित प्रतिक्रिया बल N_{2} है। जब सीढ़ी सरकने वाली हो, तब

(A) $\mu_{1}=0 \mu_{2} \neq 0$ and तथा $N_{2} \tan \theta=\frac{\mathrm{mg}}{2}$
(B) $\mu_{1} \neq 0 \quad \mu_{2}=0$ and तथा $N_{1} \tan \theta=\frac{\mathrm{mg}}{2}$
(C) $\mu_{1} \neq 0 \mu_{2} \neq 0$ and तथा $N_{2} \tan \theta=\frac{\mathrm{mg}}{1+\mu_{1} \mu_{2}}$
(D) $\mu_{1}=0 \quad \mu_{2} \neq 0$ and तथा $\mathrm{N}_{1} \tan \theta=\frac{\mathrm{mg}}{2}$

Ans. (C), (D)

Resonance Eduventures Pvt. Ltd.

Sol. Since rod is about to slip so both friction will be limiting

$$
\begin{aligned}
& f_{1}=\mu_{1} N_{1} \\
& f_{2}=\mu_{2} N_{2}
\end{aligned}
$$

In option (A)(D) $\mu_{1}=0$
Net torque about A should be zero

$$
\begin{array}{ll}
& \mathrm{mg} \cos \theta \frac{\ell}{2}=\mathrm{N}_{1} \sin \theta \ell \\
\Rightarrow & \mathrm{~N}_{1}=\frac{\mathrm{mg} \cot \theta}{2} \\
\Rightarrow & \mathrm{~N}_{1} \tan \theta=\frac{\mathrm{mg}}{2} \\
\text { and } & \mathrm{N}_{2}=\mathrm{mg} \\
\text { (B) } & \mu_{2}=0
\end{array}
$$

There is no force to balance N_{1} so rod can not remain in equilibrium
(C) $\quad N_{1}=\mu_{2} N_{2}$
$\mathrm{N}_{2}+\mu_{1} \mathrm{~N}_{1}=\mathrm{mg}$
$\mathrm{N}_{2}+\mu_{1} \mu_{2} \mathrm{~N}_{2}=\mathrm{mg}$
$N_{2}=\frac{\mathrm{mg}}{1+\mu_{1} \mu_{2}}$

Hindi चूंकि छड़ फिसलती है अतः दोनों घर्षण सीमान्त होंगे

$$
\begin{aligned}
& f_{1}=\mu_{1} N_{1} \\
& f_{2}=\mu_{2} N_{2}
\end{aligned}
$$

विकल्प (A)(D) में $\mu_{1}=0$
A के सापेक्ष कुल बलाघूर्ण शून्य होना चाहिये

$$
\begin{array}{ll}
& \mathrm{mg} \cos \theta \frac{\ell}{2}=\mathrm{N}_{1} \sin \theta \ell \\
\Rightarrow & \mathrm{~N}_{1}=\frac{\mathrm{mg} \cot \theta}{2} \\
\Rightarrow & \mathrm{~N}_{1} \tan \theta=\frac{\mathrm{mg}}{2} \\
\text { तथा } & \mathrm{N}_{2}=\mathrm{mg} \\
\text { (B) } & \mu_{2}=0
\end{array}
$$

यहाँ N_{1} को संतुलित करने के लिये कोई बल नहीं है अतः छड़ साम्यावस्था में नहीं रह सकती है।
(C) $\quad N_{1}=\mu_{2} N_{2}$
$\mathrm{N}_{2}+\mu_{1} \mathrm{~N}_{1}=\mathrm{mg}$
$\mathrm{N}_{2}+\mu_{1} \mu_{2} \mathrm{~N}_{2}=\mathrm{mg}$
$N_{2}=\frac{\mathrm{mg}}{1+\mu_{1} \mu_{2}}$
4. A light source, which emits two wavelengths $\lambda_{1}=400 \mathrm{~nm}$ and $\lambda_{2}=600 \mathrm{~nm}$, is used in a Young's double slit experiment. If recorded fringe widths for λ_{1} and λ_{2} are β_{1} and β_{2} and the number of fringes for them within a distance y on one side of the central maximum are m_{1} and m_{2}, respectively, then
(A) $\beta_{2}>\beta_{1}$
(B) $m_{1}>m_{2}$
(C) From the central maximum, $3^{\text {rd }}$ maximum of λ_{2} overlaps with $5^{\text {th }}$ minimum of λ_{1}
(D) The angular separation of fringes for λ_{1} is greater than λ_{2}

यंग के द्वि झिरी (double slit) प्रयोग में प्रयुक्त प्रकाश स्त्रोत दो तरंगदैध्यों $\lambda_{1}=400 \mathrm{~nm}$ तथा $\lambda_{2}=600 \mathrm{~nm}$ को उत्सर्जित करता है। यदि तरंगदैध्यों λ_{1} तथा λ_{2} के लिए अभिलिखित (recorded) फ्रिंज चौड़ाई क्रमशः β_{1} तथा β_{2} है तथा केन्द्रिय दीप्त फ्रिन्ज के एक ओर y दूरी तक फ्रिंजों की संख्या क्रमशः m_{1} तथा m_{2} है, तब
(A) $\beta_{2}>\beta_{1}$
(B) $m_{1}>m_{2}$
(C) केन्द्रिय दीप्त फ्रिंज से λ_{2} की तीसरी दीप्त फ्रिंज λ_{1} की पाँचवी अदीप्त फ्रिंज को ढकती है।
(D) λ_{1} की फ्रिंजों का कोणीय पृथक्करण (angular separation) λ_{2} की फ्रिंजों के कोणीय पृथक्करण से अधिक है।

Ans. (A), (B), (C)
Sol. $\beta=\frac{\lambda D}{d} \quad \therefore \quad \lambda_{2}>\lambda_{1} \quad$ so $\quad \beta_{2}>\beta_{1}$
No of fringes in a given width $(\mathrm{m})=\frac{\mathrm{y}}{\beta} \Rightarrow \mathrm{m}_{2}<\mathrm{m}_{1}$
$3^{\text {rd }}$ maximum of $\lambda_{2}=\frac{3 \lambda_{2} D}{d}=\frac{1800 \mathrm{D}}{d}$
$5^{\text {th }}$ minimum of $\lambda_{1}=\frac{9 \lambda_{1} \mathrm{D}}{2 \mathrm{~d}}=\frac{1800 \mathrm{D}}{\mathrm{d}}$
So, $3^{\text {rd }}$ maxima of λ_{2} will meet with $5^{\text {th }}$ minimum of λ_{1}
Angular sepration $=\frac{\lambda}{\mathrm{d}} \Rightarrow$ Angular seperation for λ_{1}, will be lesser
$\beta=\frac{\lambda D}{d} \quad \therefore \quad \lambda_{2}>\lambda_{1} \quad$ अत: $\quad \beta_{2}>\beta_{1}$
दी गई चौड़ाई (m) में फ्रिन्जों की संख्या $=\frac{\mathrm{y}}{\beta} \Rightarrow \mathrm{m}_{2}<\mathrm{m}_{1}$
λ_{2} का $3^{r d}$ उच्चिष्ठ $=\frac{3 \lambda_{2} \mathrm{D}}{\mathrm{d}}=\frac{1800 \mathrm{D}}{\mathrm{d}}$
λ_{1} का $5^{\text {th }}$ निम्निष्ठ $=\frac{9 \lambda_{1} \mathrm{D}}{2 \mathrm{~d}}=\frac{1800 \mathrm{D}}{\mathrm{d}}$
अतः λ_{2} का $3^{\text {rd }}$ उच्चिष्ठ λ_{1} के $5^{\text {th }}$ निम्निष्ठ से मिलेगा
कोणीय पृथक्करण $=\frac{\lambda}{\mathrm{d}} \Rightarrow$ कोणीय पृथक्करण λ_{1} के लिये कम होगा
5. Two ideal batteries of emf V_{1} and V_{2} and three resistances R_{1}, R_{2} and R_{3} are connected as shown in the figure. The current in resistance R_{2} would be zero if
विद्युत वाहक बल V_{1} तथा V_{2} वाली दो आदर्श बैटरी तथा तीन प्रतिरोध R_{1}, R_{2} तथा R_{3} चित्र में दर्शाए गए क्रम के अनुसार जुड़े हुए हैं। प्रतिरोध R_{2} में बहने वाली विद्युत धारा शून्य होगी, यदि

(A) $V_{1}=V_{2}$ and तथा $R_{1}=R_{2}=R_{3}$
(B) $\mathrm{V}_{1}=\mathrm{V}_{2}$ and तथा $\mathrm{R}_{1}=2 \mathrm{R}_{2}=\mathrm{R}_{3}$
(C) $\mathrm{V}_{1}=2 \mathrm{~V}_{2}$ and तथा $2 \mathrm{R}_{1}=2 \mathrm{R}_{2}=\mathrm{R}_{3}$
(D) $2 V_{1}=V_{2}$ and तथा $2 R_{1}=R_{2}=R_{3}$

Ans. (A), (B), (D)

Potential of Junction O
संधि O का विभव
$\mathrm{V}_{0}=\frac{\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}+0-\frac{\mathrm{V}_{2}}{\mathrm{R}_{3}}}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}}$
Current through R_{2} will be zero if
R_{2} से जाने वाली धारा शून्य होगी यदि
$V_{0}=0 \Rightarrow \quad \frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{3}}$
6. Let $E_{1}(r), E_{2}(r)$ and $E_{3}(r)$ be the respective electric fields at a distance r from a point charge Q, an infinitely long wire with constant linear charge density λ, and an infinite plane with uniform surface charge density σ. if $E_{1}\left(r_{0}\right)=E_{2}\left(r_{0}\right)=E_{3}\left(r_{0}\right)$ at a given distance r_{0}, then
एक बिन्दु आवेश Q, एक एकसमान रेखीय आवेश घनत्व (Linear charge density) λ वाले अनन्त लम्बाई तके तार तथा एक एकसमान पृष्ठ आवेश घनत्व (uniform surface charge density) σ वाले अनन्त समतल चादर के कारण r दूरी पर विद्युत क्षेत्र की तीव्रतायें क्रमशः $E_{1}(r), E_{2}(r)$ तथा $E_{3}(r)$ हैं यदि एक दी गई दूरी r_{0} पर $E_{1}\left(r_{0}\right)=E_{2}\left(r_{0}\right)=E_{3}\left(r_{0}\right)$ तब
(A) $\mathrm{Q}=4 \sigma \pi \mathrm{r}_{0}^{2}$
(B) $r_{0}=\frac{\lambda}{2 \pi \sigma}$
(C) $E_{1}\left(r_{0} / 2\right)=2 E_{2}\left(r_{0} / 2\right)$
(D) $E_{2}\left(r_{0} / 2\right)=4 E_{3}\left(r_{0} / 2\right)$

Ans. (C)
Sol. $\frac{Q}{4 \pi \epsilon_{0} r_{0}^{2}}=\frac{\lambda}{2 \pi \epsilon_{0} r_{0}}=\frac{\sigma}{2 \epsilon_{0}}$
$\mathrm{Q}=2 \pi \sigma \mathrm{r}_{0}^{2} \quad$ A incorrect
$r_{0}=\frac{\lambda}{\pi \sigma}$ B incorrect
$E_{1}\left(\frac{r_{0}}{2}\right)=\frac{4 E_{1}\left(r_{0}\right)}{1}$
$E_{2}\left(\frac{r_{0}}{2}\right)=2 E_{2}\left(r_{0}\right) \Rightarrow$
C correct
$E_{3}\left(\frac{r_{0}}{2}\right)=E_{3}\left(r_{0}\right)=E_{2}\left(r_{0}\right)$
D incorrect
Hindi $\frac{Q}{4 \pi \epsilon_{0} r_{0}^{2}}=\frac{\lambda}{2 \pi \epsilon_{0} r_{0}}=\frac{\sigma}{2 \epsilon_{0}}$
$\mathrm{Q}=2 \pi \sigma r_{0}^{2}$
$r_{0}=\frac{\lambda}{\pi \sigma}$
A गलत है

B गलत है
$E_{1}\left(\frac{r_{0}}{2}\right)=\frac{4 E_{1}\left(r_{0}\right)}{1}$
$E_{2}\left(\frac{r_{0}}{2}\right)=2 E_{2}\left(r_{0}\right) \Rightarrow$
C सही है
$E_{3}\left(\frac{r_{0}}{2}\right)=E_{3}\left(r_{0}\right)=E_{2}\left(r_{0}\right)$
D गलत है

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
7. A student is performing an experiment using a resonance column and a tuning fork of frequency $244 \mathrm{~s}^{-1}$. He is told that the air in the tube has been replaced by another gas (assume that the column remains filled with the gas). If the minimum height at which resonance occurs is $(0.350 \pm 0.005) \mathrm{m}$, the gas in the tube is
(Useful information) : $\sqrt{167 R T}=640 j^{1 / 2} \mathrm{~mole}^{-1 / 2} ; \sqrt{140 \mathrm{RT}}=590 \mathrm{j}^{1 / 2} \mathrm{~mole}^{-1 / 2}$. The molar masses M in grams are given in the options. Take the value of $\sqrt{\frac{10}{\mathrm{M}}}$ for each gas as given there.)
(A) Neon $\left(M=20, \sqrt{\frac{10}{20}}=\frac{7}{10}\right)$
(B) Nitrogen $\left(M=28, \sqrt{\frac{10}{28}}=\frac{3}{5}\right)$
(C) Oxygen $\left(\mathrm{M}=32, \sqrt{\frac{10}{32}}=\frac{9}{16}\right)$
(D) Argon $\left(M=36, \sqrt{\frac{10}{36}}=\frac{17}{32}\right)$

एक विद्यार्थी एक अनुनाद स्तम्भ तथा एक स्वरित्र द्विभुज (tuning fork), जिसकी आवृत्ति $244 \mathrm{~s}^{-1}$ है, को उपयोग में लाते हुए एक प्रयोग करता है। उसे बताया गया है कि नली में वायु के स्थान पर एक अन्य गैस भरी हुई है। (मान लीजिए स्तम्भ सदैव गैस से भरा रहता है।) यदि अनुनाद की स्थिति के लिए न्यूतनम ऊँचाई $(0.350 \pm 0.005) \mathrm{m}$ है, तब नली में उपस्थित गैस है/है :
(उपयोगी सूचना) : $\sqrt{167 R T}=640 j^{1 / 2} \mathrm{~mole}^{-1 / 2} ; \sqrt{140 \mathrm{RT}}=590 \mathrm{j}^{1 / 2} \mathrm{~mole}^{-1 / 2}$ तथा प्रत्येक गैस के लिए उनके मोलर द्रव्यमान M ग्राम का मान विकल्पों में दिए है। $\sqrt{\frac{10}{\mathrm{M}}}$ का मान जैसा कि वहाँ दिया गया है, वही प्रयोग करे।)
(A) निऑन $\left(M=20, \sqrt{\frac{10}{20}}=\frac{7}{10}\right)$
(B) नाइट्रोजन $\left(M=28, \sqrt{\frac{10}{28}}=\frac{3}{5}\right)$
(C) ऑक्सीजन $\left(\mathrm{M}=32, \sqrt{\frac{10}{32}}=\frac{9}{16}\right)$
(D) ऑर्गन ($M=36, \sqrt{\frac{10}{36}}=\frac{17}{32}$)

Ans. (D)
Sol. $\mathrm{f}=\frac{1}{4 \ell} \sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}}} \& \frac{\Delta \mathrm{f}}{\mathrm{f}}=\frac{\Delta \ell}{\ell}$
(A) $\mathrm{M}=20 \times 10^{-3}$
$\mathrm{f}=320 \mathrm{~Hz}$
$\Delta f= \pm 4.5 \mathrm{~Hz}$
Not possible संभव नहीं है
(B) $M=20 \times 10^{-3} \quad f=253 \mathrm{~Hz}$
$\Delta \mathrm{f}= \pm 3.6 \mathrm{~Hz} \quad$ Not possible संभव नहीं है
(C) $M=32 \times 10^{-3} \quad f=237 \mathrm{~Hz}$
$\Delta \mathrm{f}= \pm 3.4 \mathrm{~Hz} \quad$ Not possible संभव नहीं है
(D) $M=36 \times 10^{-3}$
$\mathrm{f}=242.8 \mathrm{~Hz}$
$\Delta f= \pm 3.5 \mathrm{~Hz}$
possible संभव है

Resonance Eduventures Pvt. Ltd.

8. A parallel plate capacitor has a dielectric slab of dielectric constant K between its plates that $\infty v e r s 1 / 3$ of the area of its plates, as shown in the figure. The total capacitance of the capacitor is C while that of the portion with dielectric in between is C_{1}. When the capacitor is charged, the plate area covered by the dielectric gets charge Q_{1} and the rest of the area gets charge Q_{2}. Choose the correct option/options, igonoring edge effects. चित्र में दर्शाए गए एक समान्तर पट्टिका संधारित्र की पट्टिकाओं के बीच रखा परावैद्युतांक K का एक परावैद्युत (Dielectric) गुटका पट्टिकाओं के क्षेत्रफल का $1 / 3$ भाग ढकता है। संधारित्र की कुल धारिता C है, जबकि वह भाग, जहाँ परावैद्युत गुटका रखा है, की धारिता C_{1} है। संधारित्र को आवेशित करने पर पट्टिकाओं के उस भाग में जहाँ परावैद्युत रखा है, आवेश Q_{1} तथा शेष क्षेत्रफल में आवेश Q_{2} समाग्रहित होता है परावैद्युत में विद्युत क्षेत्र E_{1} तथा शेष भाग में विद्युत क्षेत्र E_{2} है। कोर प्रभाव (edge effects) की उपेक्षा करते हुए सही विकल्प/विकल्पों को चुनिए।

(A) $\frac{E_{1}}{E_{2}}=1$
(B) $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{1}{\mathrm{~K}}$
(C) $\frac{Q_{1}}{Q_{2}}=\frac{3}{K}$
(D) $\frac{\mathrm{C}}{\mathrm{C}_{1}}=\frac{2+\mathrm{K}}{\mathrm{K}}$

Ans. (A), (D)
Sol. $\quad C=\frac{K \varepsilon_{0} A}{3 d}+\frac{2 \varepsilon_{0} A}{3 d}$
$C_{1}=\frac{K \varepsilon_{0} A}{3 d}$
$\frac{\mathrm{C}}{\mathrm{C}_{1}}=\frac{2+\mathrm{K}}{\mathrm{K}}$
Ans. (D)
$E_{1}=E_{2}=\frac{V}{d}$
$\Rightarrow \quad \frac{E_{1}}{E_{2}}=1$
Ans. (A)

$$
\begin{aligned}
Q_{1} & =C_{1} V=\frac{K_{\varepsilon_{0}} A}{3 d} V \\
Q_{2} & =C_{2} V=\frac{2 \varepsilon_{0} A}{3 d} V \\
\Rightarrow \quad \frac{Q_{1}}{Q_{2}} & =\frac{K}{2}
\end{aligned}
$$

Resonance Eduventures Pvt. Ltd.

9. A transparent thin film of uniform thickness and refractive index $n_{1}=1.4$ is coated on the convex spherical surface of radius R at one end of a long solid glass cylinder of refractive index $n_{2}=1.5$. as shown in the figure. Rays of light of light parallel to the axis of the cylinder traversing through the film from air to glass get focused at distance f_{1} from the film, while rays of light traversing from glass to air get focused at distance f_{2} from the film. Then
काँच के एक लम्बे व ठोस बेलन, जिसका अपवर्तनांक $n_{2}=1.5$ है, का एक छोर गोलीय है जैसा कि चित्र में दर्शाया गया है। इस गोलीय पृष्ठ की त्रिज्या R है और इस पर $n_{1}=1.4$ अपवर्तनांक की एकसमान मोटाई वाली एक पारदर्शी पतली फिल्म लगी है। वायु से फिल्म में होकर काँच में जाने वाली प्रकाश की किरणें जो कि बेलन के अक्ष के समान्तर है फिल्म से f_{1} दूरी पर फोकसित होती है, जबकि काँच से वायु में जाने वाली किरणें फिल्म से f_{2} दूरी पर फोकस होती है। तब

(A) $\left|f_{1}\right|=3 R$
(B) $\left|\mathrm{f}_{1}\right|=2.8 \mathrm{R}$
(C) $\left|f_{2}\right|=2 R$
(D) $\left|\mathrm{f}_{2}\right|=1.4 \mathrm{R}$

Ans. (A), (C)
Sol. $\frac{1}{f_{\text {film }}}=\left(n_{1}-1\right)\left(\frac{1}{R}-\frac{1}{R}\right) \Rightarrow \quad f_{\text {film }}=\infty$ (infinite)
\therefore No effect of presence of film.
\therefore फिल्म की उपरिथति का कोई प्रभाव नहीं है
From Air to Glass वायु से काँच:
Using single spherical Refraction :-
एकल गोलीय अपवर्तन के उपयोग से

$$
\begin{aligned}
& \frac{n_{2}}{v}-\frac{1}{u}=\frac{n_{2}-1}{R} \\
& \frac{1.5}{v}-\frac{1}{\alpha}=\frac{1.5-1}{R} \Rightarrow v=3 R
\end{aligned}
$$

$\therefore \mathrm{f}_{1}=3 \mathrm{R}$
From Glass to Air काँच से वायु :-

$$
\begin{aligned}
& \frac{1}{v}-\frac{n_{2}}{u}=\frac{1-n_{2}}{-R} \\
& \Rightarrow \quad \frac{1}{v}-\frac{1.5}{\propto}=\frac{1-1.5}{-R} \\
& \Rightarrow \quad v=2 R \\
& \therefore f_{2}=2 R
\end{aligned}
$$

10. At time $t=0$, terminal A in the circuit shown in the figure is connected to B by a key and alternating current $\mathrm{I}(\mathrm{t})=\mathrm{I}_{0} \cos (\omega \mathrm{t}$,$) , with \mathrm{I}_{0}=1 \mathrm{~A}$ and $\omega=500 \mathrm{rad} \mathrm{s}^{-1}$ starts flowing in it with the initial direction shown in the figure. At $t=\frac{7 \pi}{6 \omega}$, the key is switched from B to D. Now onwards on ly A and D are connected. A total charge Q flows from the battery to charge the capacitor fully. If $\mathrm{C}=20 \mu, \mathrm{R}=10 \Omega$ and the battery is ideal with emf of 50 V , identify the correct statement (s)

(A) Magnitude of the maximum charge on the capacitor before $\mathrm{t}=\frac{7 \pi}{6 \omega}$ is $1 \times 10^{-3} \mathrm{C}$.
(B) The current in the left part of the circuit just before $\mathrm{t}=\frac{7 \pi}{6 \omega}$ is clockwise
(C) Immediately after A is connected to D. the current in R is 10A.
(D) $Q=2 \times 10^{-3} \mathrm{C}$.

चित्र में दर्शाए गये परिपथ में समय $t=0$ पर बिन्दु A को स्विच द्वारा बिन्दु B से जोड़ा जाता है। इससे परिपथ में एक प्रत्यावर्ती धारा $\mathrm{I}(\mathrm{t})=\mathrm{I}_{0} \cos (\omega \mathrm{t})$ चित्र में दिखाई गई दिशा में बने लगती है, जहाँ $\mathrm{I}_{0}=1 \mathrm{~A}$ तथा $\omega=500 \mathrm{rad} \mathrm{s}^{-1}$ । समय $\mathrm{t}=\frac{7 \pi}{6 \omega}$ पर स्विच को बिन्दु B से हटाकर बिन्दु D से जोड़ा जाता है। इसके पश्चात् सिर्फ A तथा D जुड़े हुए है। संधारित्र को पूरी तरह आवेशित करने के लिए बैटरी से कुल आवेश Q प्रवाहित होता है। यदि $C=20 \mu, R=10 \Omega$ तथा बैटरी $50 V$ विद्युत वाहक बल वाली आदर्श बैटरी हो तब सही विकल्प/विकल्पों को चुनिए।

(A) संधारित्र पर समय $t=\frac{7 \pi}{6 \omega}$ से पहले अधिकतम आवेश का परिमाण $1 \times 10^{-3} \mathrm{C}$ है ।
(B) बाँए परिपथ में समय $\mathrm{t}=\frac{7 \pi}{6 \Theta}$ से ठीक पहले विद्युत धारा दक्षिणावर्ती (clockwise) है।
(C) बिन्दु A को बिन्दु D से जोड़ने के तुरन्त पश्चात् प्रतिरोध R में विद्युत धारा का मान 10A है।
(D) $Q=2 \times 10^{-3} \mathrm{C}$.

Ans. (C), (D)

Resonance Eduventures Pvt. Ltd.

Sol. Charge on capacitor will be maximum at $\mathrm{t}=\frac{\pi}{2 \omega}$

$$
Q_{\max }=2 \times 10^{-3} \mathrm{C}
$$

(A) charge supplied by source from $t=0$ to $t=\frac{7 \pi}{6 \omega}$
$Q=\int_{0}^{\frac{7 \pi}{6 \omega}} \cos (500 t) d t=\left[\frac{\sin 500 t}{500}\right]_{0}^{\frac{7 \pi}{6 \omega}}=\frac{\sin \frac{7 \pi}{6}}{500}=-1 m C$

Just after switching

In steady state

Apply KVL just after switching

$$
50+\frac{Q_{1}}{C}-I R=0 \Rightarrow I=10 A
$$

In steady state $Q_{2}=1 \mathrm{mC}$
net charge flown from battery $=2 m C$
Hindi संधारित्र पर आवेश $\mathrm{t}=\frac{\pi}{2 \omega}$ पर अधिकतम होगा

$$
Q_{\max }=2 \times 10^{-3} \mathrm{C}
$$

(A) $t=0$ से $t=\frac{7 \pi}{6 \omega}$ तक स्त्रोत द्वारा सप्लाई आवेश

$$
Q=\int_{0}^{\frac{7 \pi}{6 \omega}} \cos (500 t) d t=\left[\frac{\sin 500 \mathrm{t}}{500}\right]_{0}^{\frac{7 \pi}{6 \omega}}=\frac{\sin \frac{7 \pi}{6}}{500}=-1 \mathrm{mC}
$$

कुंजी बंद करने के ठीक बाद

रथायी अवस्था में

कुंजी बंद करने के ठीक बाद KVL लगाने पर
स्थायी अवस्था में $Q_{2}=1 \mathrm{mC}$
$50+\frac{\mathrm{Q}_{1}}{\mathrm{C}}-\mathrm{IR}=0 \Rightarrow \mathrm{I}=10 \mathrm{~A}$
बैटरी से प्रवाहित कुल आवेश $=2 \mathrm{mC}$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Section-2 : (One Integer Value Correct Type.)

This section contains 10 questions. Each question, when worked out will result in one integer from 0 to 9 (both inclusive)

खण्ड़-2: (एक पूर्णाक मान सही प्रकार)
इस खण्ड में 10 प्रश्न है। प्रत्येक प्रश्न को हल करने पर परिमाण 0 से 9 (दोनों शामिल) के बीच का एक पूर्णांक मान होगा।
11. Two parallel wires in the plane of the paper are distance X_{0} apart. A point charge is moving with speed u between the wires in the same plane at a distance X_{1} from one of the wires. When the wires carry current of magnitude I in the same direction, the radius of curvature of the path of the point charge is R_{1}. In contrast, if the currents I in the two wires have direction opposite to each other, the radius of curvature of the path is R_{2}.

If $\frac{x_{0}}{x_{1}}=3$, the value of $\frac{R_{1}}{R_{2}}$ is.
दो समान्तर तार कागज के तल के तल में एक दूसरे से X_{0} दूरी पर है। दोनों तारों के बीच एक बिन्दु आवेश, जो उसी तल में है तथा एक तार से X_{1} दूरी पर है चाल u से गतिमान है। जब तारों में परिणाम I की विद्युत धारा एक दिशा में प्रवाहित की जाती है, बिन्दु आवेश के पथ की वक्रता त्रिज्या R_{1} हैं। इसके विपरित यदि दोनों तारों में धारा I की दिशा एक दूसरे के विपरीत

हो, तब पथ की त्रिज्या R_{2} है। यदि $\frac{x_{0}}{x_{1}}=3$, तब $\frac{R_{1}}{R_{2}}$ का मान है।

Ans. 3

Sol. $\quad B_{2}=\frac{\mu, 0}{2 \pi x_{1}}+\frac{\mu_{0} I}{2 \pi\left(x-x_{1}\right)}$ (opposite विपरीत)
$B_{1}=\frac{\mu, 0 l}{2 \pi x_{1}}-\frac{\mu_{0} l}{2 \pi\left(x-x_{1}\right)}$ (same समान)
Case-1 When current is in the same direction
Case-1 जब धारा समान दिशा में है

$B=B_{1}=\frac{3 \mu_{0} I}{2 \pi x_{0}}-\frac{3 \mu_{0} I}{4 \pi x_{0}}=\frac{3 \mu_{0} I}{4 \pi x_{0}}$
$R_{1}=\frac{m v}{q B_{1}}$
Case-2 When current is in oposite direction
Case-1 जब धारा विपरीत दिशा में है
$B=B_{2}=\frac{9 \mu_{0} 1}{4 \pi x_{0}}$
$R_{2}=\frac{m v}{q B_{2}}$
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{B}_{2}}{\mathrm{~B}_{1}}=\frac{9}{3}=3$
12. Durring Searle's experiment, zero of the Vernier scale lies between $3.20 \times 10^{-2} \mathrm{~m}$ and $3.25 \times 10^{-2} \mathrm{~m}$ of the main scale. The $20^{\text {th }}$ division of the Vernier scale exactly coincides with one of the main scale divisions. When an additional load of 2 kg is applied to the wire, the zero of the Vernier scale still lies between $3.20 \times 10^{-2} \mathrm{~m}$ and $3.25 \times 10^{-2} \mathrm{~m}$ of the main scale but now the $45^{\text {th }}$ division of Vernier scale coincides with one of the main scale divisions. The length of the thin metallic wire is 2 m . and its cross-sectional area is $8 \times 10^{-7} \mathrm{~m}^{2}$. The least count of the Vernier scale is $1.0 \times 10^{-5} \mathrm{~m}$. The maximum percentage error in the Young's modulus of the wire is

सर्ल के प्रयोग में वर्नियर पैमाने का शून्य मुख्य पैमाने पर $3.20 \times 10^{-2} \mathrm{~m}$ तथा $3.25 \times 10^{-2} \mathrm{~m}$ के बीच है। वर्नियर पैमाने का बीसवाँ भाग ($20^{\text {th }}$ division) मुख्य पैमाने के किसी एक भाग के बिलकुल सीध में है। तार पर 2 kg का अतिरिक्त भार लगाने पर, यह देखा गया कि वर्नियर पैमाने का शून्य अभी भी मुख्य पैमाने पर $3.20 \times 10^{-2} \mathrm{~m}$ तथा $3.25 \times 10^{-2} \mathrm{~m}$ के बीच है, परन्तु अब वर्नियर पैमाने का पैंतालिसवाँ भाग ($45^{\text {th }}$ division) मुख्य पैमाने के किसी अन्य भाग के बिलकुल सीध में है। धातु के पतले तार की लम्बाई 2 m तथा अनुप्रस्थ काट का क्षेत्रफल $8 \times 10^{-7} \mathrm{~m}^{2}$ है। पैमाने का अल्पतमांक (least count) $1.0 \times 10^{-5} \mathrm{~m}$ है। तार के यंग प्रत्यास्थता गुणांक (Young's modulus) में अधिकतम प्रतिशत त्रुटि है।

Ans. 8

Sol. Observation प्रेक्षण - 1
Let weight used is W_{1}, extension ℓ_{1} माना उपयोग लिया गया भार W_{1} है, प्रसार ℓ_{1}
$y=\frac{W_{1} / A}{\ell_{1} / L} \Rightarrow W_{1}=\frac{y A \ell_{1}}{L} \quad \ell_{1}=3.2 \times 10^{-2}+20 \times 10^{-5}$

Observation प्रेक्षण -2
Let weight used is $\mathrm{W}_{2} \quad$ extension ℓ_{2} माना उपयोग लिया गया भार W_{2} है, प्रसार ℓ_{2}
$y=\frac{W_{2} / A}{\ell_{2} / L} \Rightarrow W_{1}=\frac{y A \ell_{2}}{L} \quad \ell_{1}=3.2 \times 10^{-2}+45 \times 10^{-5}$
$W_{2}-W_{1}=\frac{y A}{L}\left(\ell_{2}-\ell_{1}\right) \Rightarrow y=\frac{\left(W_{2}-W_{1}\right) / L}{y A\left(\ell_{2}-\ell_{1}\right)}$
$\left(\frac{\Delta \mathrm{y}}{\mathrm{y}}\right)_{\max }=\frac{\Delta \ell_{2}+\Delta \ell_{1}}{\ell_{2}-\ell_{1}}=\frac{2 \times 10^{-5}}{25 \times 10^{-5}}$
$\left(\frac{\Delta y}{y}\right)_{\max } \times 100 \%=\frac{2}{25} \times 100 \%=8 \%$

Resonance Eduventures Pvt. Ltd.

13. To find the distance d over which a signal can be seen clearly in foggy conditions, a railways engineer uses dimensional analysis and assumes that the distance depends on the mass density ρ of the fog, intensity (power/area) S of the light from the signal and its frequency f. The engineer find that d is proportional to $S^{1 / n}$. The value of n is:
कोहरे की स्थिति में वह दूरी d, जहाँ से सिग्नल स्पष्ट रूप से दिखाई दे, जानने के लिए एक रेलवे इंजीनियर विमीय विश्लेषण का प्रयोग करता है। उसके अनुसार यह दूरी d कोहरे के द्रव्यमान घनत्व ρ सिग्नल के प्रकाश की तीव्रता S (शक्ति/क्षेत्रफल) तथा उसकी आवृत्ति f पर निर्भर है। यदि इंजीनियर d को $\mathrm{S}^{1 / n}$ के समानुपाती पाता है, तब n का मान है :

Ans. 3
Sol. $\quad d=k \quad(\rho)^{a} \quad(S)^{b} \quad(f)^{c}$

$$
\begin{aligned}
& {\left[\frac{M}{L^{3}}\right]^{a}\left[\frac{M^{1} L^{2} T^{-2}}{L^{2} T}\right]^{b}\left[\frac{1}{T}\right]^{c}} \\
& 0=a+b \\
& 1=-3 a \quad \Rightarrow a=-\frac{1}{3} \quad \text { So अतः } b=\frac{1}{3} \\
& 0=-3 b+c \\
& \text { So अत: } n=3
\end{aligned}
$$

14. A thermodynamic system is taken form an initial state i with internal energy $U_{i}=100 \mathrm{~J}$ to the final state f along two different paths iaf and ibf, as schematically shown in the fire. The work done by the system along the paths af, ib and bf are $W_{a f}=200 \mathrm{~J}, \mathrm{~W}_{\mathrm{ib}}=50 \mathrm{~J}$ and $\mathrm{W}_{\mathrm{bf}}=100 \mathrm{~J}$ respectively. The heat supplied to the system along the path iaf, ib and bf are $Q_{i f f}, Q_{b f}$ and $Q_{i b}$ respectively. If the internal energy of the sytem in the state b is $U_{b}=$ 200 J and $Q_{i a f}=500 \mathrm{~J}$, the ratio $Q_{b f} / Q_{i b}$ is:
एक ऊष्मागतिक तंत्र (thermodynamic system) अपनी प्रारम्भिक अवस्था i जिस पर उसकी आन्तरिक ऊर्जा $\mathrm{U}_{\mathrm{i}}=100 \mathrm{~J}$ है, से अन्तिम अवस्था f तक दो भिन्न पथों iaf तथा ibf के अनुदिश लाया जाता है, जैसा चित्र में दर्शाया गया है।
 तंत्र को दी गई ऊष्मा क्रमशः $Q_{i f}, Q_{i b}$ तथा $Q_{b f}$ है। यदि अवस्था b पर तंत्र की आन्तरिक ऊर्जा $\mathrm{U}_{\mathrm{b}}=200 \mathrm{~J}$ तथा $\mathrm{Q}_{\mathrm{iaf}}=500 \mathrm{~J}$, है तब अनुपात $\mathrm{Q}_{\mathrm{bf}} / \mathrm{Q}_{\mathrm{ib}}$ होगा।

Ans. 2

Sol.
$\mathrm{w}_{\mathrm{ibf}}=150 \mathrm{~J}$
$\mathrm{w}_{\mathrm{iaf}}=200 \mathrm{~J}$
$Q_{i a f}=500 \mathrm{~J}$ So $U_{i \text { iaf }}=300 \mathrm{~J}$
So अतः $U_{f}=400 \mathrm{~J}$
$\mathrm{U}_{\mathrm{ib}}=100 \mathrm{~J}$
$Q_{i b}=100+50=150 \mathrm{~J}$
$Q_{i b f}=300+150=450 \mathrm{~J}$

So the required ratio अतः आवश्यक अनुपात $\frac{Q_{b f}}{Q_{i b}}=\frac{450-150}{150}=2$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | Email : contact@resonance.ac.in
This solution was download from Resonance JEE ADVANCED 2014 Solution portal
15. A galvanometer gives full scale deflection with 0.006 A current. By connecting it to a 4990Ω resistance, it can be converted into a voltmeter of range $0-30 \mathrm{~V}$. If connected to a $\frac{2 \mathrm{n}}{249} \Omega$ resistance, it becomes an ammeter of range $0-1.5 \mathrm{~A}$. The value of n is:

एक गैल्वेनोमीटर 0.006 A की धारा प्रावाहित करने पूर्ण विक्षेप देता है। इसक साथ 4990Ω का प्रतिरोध लगाने पर इसे $0-30$ Vपरास वाले वोल्टमापी (voltmeter) में परिवर्तित किया जा सकता है। गैल्वेनोमीटर के साथ $\frac{2 n}{249} \Omega$ का प्रतिरोध लगाने पर यह $0-1.5 \mathrm{~A}$ परास वाले धारामापी (ammeter) में परिवर्तित हो जाता है। n का मान है।

Ans. 5
Sol. $\frac{6}{1000}(G+4990)=30$
$\Rightarrow G+4990=\frac{30,000}{6}=5000$
$\Rightarrow \mathrm{G}=10$
$\frac{6}{1000} \times 10=\left(1.5-\frac{6}{1000}\right) \mathrm{S}$
$\Rightarrow S=\frac{60}{1494}=\frac{2 n}{249}$
$\Rightarrow \mathrm{n}=\frac{249 \times 30}{1494}=\frac{2490}{498}=5$
16. A rocket is moving in a gravity free space with a constant acceleration of $2 \mathrm{~ms}^{-2}$ along $+x$ direction (see figure). The length of a chamber inside the rocket is 4 m . A ball is thrown from the left end of the chamber in $+x$ direction with a speed of $0.3 \mathrm{~ms}^{-1}$ relative to the rocket. At the same time, another ball is thrown in $-x$ direction with a speed of $0.2 \mathrm{~ms}^{-1}$ from its right end relative to the rocket. The time in seconds when the two balls hit each other is:

एक राकेट गुरूत्वहीन अंतरिक्ष में नियत त्वरण $2 \mathrm{~ms}^{-2}$ से $+x$ दिशा में गतिमान है (चित्र देखिए)। राकेट के कक्ष की लंबाई 4 m है। कक्ष की बाई दीवार से एक गेंद राकेट के सापेक्ष $0.3 \mathrm{~ms}^{-1}$ की गति से $+x$ दिशा के अनुदिश फेंकी जाती है। ठीक उसी समय, एक दूसरी गेंद की दाई दीवार से राकेट के सापेक्ष $0.2 \mathrm{~ms}^{-1}$ की गति से $+x$ दिशा के अनुदिश फेंकी जाती है। दोनों गेदों के एक दूसरे से टकराने तक लगने वाला समय सेकण्ड में है:

Ans. 2

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

consider motion of two balls with respect to rocket
Maximum distance of ball A from left wall $=\frac{u^{2}}{2 \mathrm{a}}=\frac{0.3 \times 0.3}{2 \times 2}=\frac{0.09}{4} \approx 0.02 \mathrm{~m}$ so collision of two balls will take place very near to left wall
For B $\quad S=u t+\frac{1}{2} a t^{2}$

$$
\begin{aligned}
-4 & =-0.2 t-\left(\frac{1}{2}\right) 2 t^{2} \quad \Rightarrow \quad t^{2}+0.2 t-4=0 \\
\Rightarrow & t=\frac{-0.2 \pm \sqrt{0.04+16}}{2}=1.9
\end{aligned}
$$

nearest integer $=2 \mathrm{~s}$

Hindi

दो गेंदों की रॉकेट के सापेक्ष टक्कर लेते हैं
बांयी दीवार से गेंद A की अधिकतम दूरी $=\frac{\mathrm{u}^{2}}{2 \mathrm{a}}=\frac{0.3 \times 0.3}{2 \times 2}=\frac{0.09}{4} \approx 0.02 \mathrm{~m}$
अतः दो गेंदों की टक्कर बांयी दीवार के बहुत पास होगी
B के लिये

$$
S=u t+\frac{1}{2} a t^{2}
$$

$$
\begin{array}{ll}
& -4=-0.2 t-\left(\frac{1}{2}\right) 2 t^{2} \quad \Rightarrow \quad t^{2}+0.2 t-4=0 \\
\Rightarrow & t=\frac{-0.2 \pm \sqrt{0.04+16}}{2}=1.9
\end{array}
$$

निकटतम पूर्णांक $=2 \mathrm{~s}$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
17. A horizontal circular platform of radius 0.5 m and mass 0.45 kg is free to rotate about its axis. Two massless spring toy-guns, each carrying a steel ball of mass 0.05 kg are attached to the platfrom at a distance 0.25 m from the centre on its either sides along its diameter (see figure). Each gun simultaneously fires the balls horizontally and perpendicular to the diameter in opposite directions. After leaving the platfrom, the balls have horizontal speed of $9 \mathrm{~ms}^{-1}$ with respect to the ground. The rotational speed of the platfrom in rad ${ }^{-1}$ after the balls leave the platform is
चित्र में दिखाया गया 0.5 m त्रिज्या तथा 0.45 kg द्रव्यमान वाला एक क्षैतिज वृत्तीय प्लेटफार्म अपने अक्ष के परितः घूमने के लिए स्वतंत्र है। दो द्रव्यमान रहित कमानी वाली खिलौना बन्दूके (toy-guns), जिन पर 0.05 kg द्रव्यमान वाली स्टील की गेंद लगी है, प्लेटफार्म के व्यास पर केन्द्र से 0.25 m की दूरी पर, केन्द्र के दोनों ओर सिथत हैं। दोनों बन्दूके एक साथ गोलियों के व्यास के लंबवत्, क्षैतिज तल में विपरीत दिशा में दागती हैं। प्लेटफार्म को छोड़ने के पश्चात् गोलियों की भूमि के सापेक्ष क्षैतिज दिशा में गति $9 \mathrm{~ms}^{-}$ ${ }^{1}$ है। गोलियों के प्लेटफार्म छोड़ने के पश्चात् प्लेटफार्म की घूर्णीय गति rad^{-1} में है:

Ans. 4

Sol. Applying conservation of angular momentum. कोणीय संवेग संरक्षण लगाने पर
$2 m v r-\frac{M R^{2}}{2} \omega=0$
$\omega=\frac{4 m v r}{M R^{2}}$
$\omega=\frac{(4)\left(5 \times 10^{-2}\right)(9)\left(\frac{1}{4}\right)}{45 \times 10^{-2} \times \frac{1}{4}}$

$\omega=4 \mathrm{rad} / \mathrm{s}$

Resonance Eduventures Pvt. Ltd.

18. A uniform circular disc of mass 1.5 kg and radius 0.5 m is initially at rest on a horizontal frictionless surface. Three forces of equal magnitude $\mathrm{F}=0.5 \mathrm{~N}$ are applied simultaneously along the three sides of an equilateral triangle XYZ its vertices on the perimeter of the disc (see figure). One second after applying the forces, the angular speed of the disc in $\mathrm{rad} \mathrm{s}^{-1}$ is:
एक एकसमान वृत्ताकार डिस्क जिसका द्रव्यमान 1.5 kg तथा त्रिज्या 0.5 m है, प्रारम्भ में घर्षण रहित क्षैतिज सतह पर विरामावस्था में है। बराबर परिमाण $F=0.5 \mathrm{~N}$ वाले तीन बल एक साथ $t=0$ चित्र में दिखाये गये समबाहु त्रिभुज $X Y Z$, जिसके शीर्ष बिंदु डिस्क की परिधि पर स्थित है, की भुजाओं के अनुदिश लगाये जाते हैं। बलों को लगाने के 1 सैकण्ड पश्चात् डिस्क की कोणिय गति, rad s^{-1} में है :

Ans. 2

Sol.

$\omega=\frac{\int \tau d t}{I}=\frac{\int_{0}^{t} 3 F \sin 30^{\circ} R d t}{I}$

$$
=\frac{3 .(0.5)(0.5)(0.5)(1)}{\frac{1.5(0.5)^{2}}{2}}
$$

$$
=2 \mathrm{rad} / \mathrm{s}
$$

Resonance Eduventures Pvt. Ltd.

19. Consider an elliptically shaped rail $P Q$ in the vertical plane with $O P=3 \mathrm{~m}$ and $O Q=4 \mathrm{~m}$. A block of mass 1 kg is pulled along the rail from P to Q with a force of 18 N, Which is always parallel to line $P Q$ (see the figure given). Assuming no frictional losses, the kinetic energy of the block when it reaches Q is $(n \times 10)$ joules. The value of n is (take acceleration due to gravity $=10 \mathrm{~ms}^{-2}$)

चित्र में दिखाई गति एक दीर्घ वृत्ताकार पटरी (rail) $P Q$ ऊर्ध्व तल में स्थित है तथा दूरियाँ $O P=3 \mathrm{~m}$ तथा $\mathrm{OQ}=4 \mathrm{~m}$ हैं। 1 kg द्रव्यमान के एक गुटके को पटरी पर P से Q तक 18 N बल से खींचा जाता है; बल की दिशा सदैव रेखा $P Q$ के समातंर है (चित्र देखिये)। घर्षण के कारण होने वाली क्षति को नगण्य मानते हुए गुटके के बिंदु Q पर पहुँचने पर उसकी गति ऊर्जा $(n \times 10)$ जूल है। n का मान है(गुरूत्वीय त्वरण का मान= $10 \mathrm{~ms}^{-2}$):

Ans. 5

Sol. $\quad W_{F}+W_{g}=K_{f}-K_{i}$
$18 \times 5+1 \mathrm{~g}(-4)=\mathrm{K}_{\mathrm{f}}$
$90-40=K_{f}$
$K_{f}=50 \mathrm{~J}=5 \times 10 \mathrm{~J}$
20. Airplanes A and B are flying with constant velocity in the same vertical plane at angles 30° and 60° with respect to the horizontal respectively as shown in figure. The speed of A is $100 \sqrt{3} \mathrm{~ms}^{-1}$. At time $t=0 \mathrm{~s}$, an observer in A finds B at a distance of 500 m . This observer sees B moving with a constant velocity perpendicular to the line of motion of A. If at $t=t_{0}, A$ just escapes being hit by B, t_{0} in seconds is:
विमान A तथा B नियम वेग से क्षैतिज से क्रमशः 30° तथा 60° का कोण बनाते हुए एक ही ऊर्ध्व तल में उड़ान भर रहे हैं। जैसा चित्र में दर्शाया गया है। विमान A की गति $100 \sqrt{3} \mathrm{~ms}^{-1}$ है। समय $t=0 \mathrm{~s}$ पर विमान A में एक प्रेक्षक के अुनसार B उससे 500 m की दूरी पर है। प्रेक्षक के अनुसार विमान B एक नियत वेग से A की गति की दिशा में लंबवत् दिशा में गतिमान है। यदि समय $t=t_{0}$ पर विमान A विमान B से टकराने से बाल-बाल बचता है, तब समय t_{0} का सेकण्ड में मान है :

Ans. 5

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Sol．

For relative motion perpendicular to line of motion of A
A की गति की रेखा के लम्बवत् सापेक्ष गति के लिये
$V_{A}=100 \sqrt{3}=V_{B} \operatorname{Cos} 30^{\circ}$
$\Rightarrow \quad V_{B}=100 \mathrm{~m} / \mathrm{s}$
$t_{0}=\frac{50}{V_{B} \sin 30^{\circ}}=\frac{500}{200 \times \frac{1}{2}}=5 \mathrm{sec}$
Ans

Resonance Eduventures Pvt．Ltd．

Educating for better tomorrow

Atomic masses: $[\mathrm{H}=1, \mathrm{D}=2, \mathrm{Li}=7, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~F}=19, \mathrm{Na}=23, \mathrm{Mg}=24, \mathrm{Al}=27$, $\mathrm{Si}=28, \mathrm{P}=31, \mathrm{~S}=32, \mathrm{Cl}=35.5, \mathrm{~K}=39, \mathrm{Ca}=40, \mathrm{Cr}=52, \mathrm{Mn}=55, \mathrm{Fe}=56, \mathrm{Cu}=63.5, \mathrm{Zn}=65, \mathrm{As}=$ $75, \mathrm{Br}=80, \mathrm{Ag}=108, \mathrm{I}=127, \mathrm{Ba}=137, \mathrm{Hg}=200, \mathrm{~Pb}=207$]

SECTION-1 : (One or More Than One Options Correct Type)
खण्ड-1: (एक या एक से अधिक सही विकल्प प्रकार)
This section contains 10 multiple coice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct.
इस खण्ड में 10 बहुविकल्प प्रश्न हैं। प्रत्येक प्रश्न में चार विकल्प $(A),(B),(C)$ और (D) हैं, जिनमें से एक या एक से अधिक सही हैं।
21. For the reaction:

$$
\mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cl}^{-}+\mathrm{HSO}_{4}^{-}+\mathrm{I}_{2}
$$

The correct statement(s) in the balanced equation is/are :
(A) Stoichiometric coefficient of HSO_{4}^{-}is 6 .
(B) Iodide is oxidized.
(C) Sulphur is reduced.
(D) $\mathrm{H}_{2} \mathrm{O}$ is one of the products.

निम्नलिखित अभिक्रिया के लिए

$$
\mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cl}^{-}+\mathrm{HSO}_{4}^{-}+\mathrm{I}_{2}
$$

सन्तुलित समीकरण में, इस अभिक्रिया के लिए सत्य कथन है (हैं) :
(A) HSO_{4}^{-}का उचित तत्वानुपाती गुणांक (Stoichiometric coefficient) 6 है।
(B) आयोडीन आक्सीकृत हो गया।
(C) सल्फर अपचयित हो गया।
(D) एक उत्पाद जल है।

Ans. (ABD)
Sol. $\quad 6 \mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+6 \mathrm{HSO}_{4}^{-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
Hence, I^{-}is oxidised to I_{2}
Coefficient of $\mathrm{HSO}_{4}^{-}=6$
and $\mathrm{H}_{2} \mathrm{O}$ is one of the product.
Hence (A), (B), (D)
हल. $\quad 6 \mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+6 \mathrm{HSO}_{4}^{-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
अतः, $\mathrm{I}^{-}, \mathrm{I}_{2}$ में आक्सीकृत होता है।
HSO_{4}^{-}का गुणांक $=6$
तथा एक उत्पाद जल $\left(\mathrm{H}_{2} \mathrm{O}\right)$ है
अतः(A), (B), (D)

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
22. The pair(s) of reagents that yield paramagnetic species is/are
(A) Na and excess of NH_{3}
(B) K and excess of O_{2}
(C) Cu and dilute HNO_{3}
(D) O_{2} and 2-ethylanthraquinol

अभिकर्मकों का जोड़ा जो अनुचुम्बकीय (paramagnetic) पदार्थ देता है (देते हैं)।
(A) Na और अधिकतता में NH_{3}
(B) K और अधिकता में O_{2}
(C) Cu और तनु HNO_{3}
(D) O_{2} और 2-ऐथिलएन्थ्राक्यूनॉल (2-ethylanthraquinol)

Ans. (ABC)
Sol. $\quad \mathrm{Na}+\mathrm{NH}_{3}$ (excess) \rightarrow dilute solution of sodium in liquid NH_{3}
(which is paramagnetic)
$\mathrm{K}+\mathrm{O}_{2}$ (excess) $\rightarrow \mathrm{KO}_{2}$ (O_{2}^{-}is paramagnetic)
$\mathrm{Cu}+$ dilute $\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}$ (NO is paramagnetic)
$\mathrm{O}_{2}+$ 2-ethylanthraquinol \rightarrow 2-ethylanthraquinone $+\mathrm{H}_{2} \mathrm{O}_{2}$ (Diamagnetic)
Hence Answer is (A), (B), (C)
हल. $\mathrm{Na}+\mathrm{NH}_{3}$ (आधिक्य) \rightarrow द्रव NH_{3} में सोडियम का तनु विलयन
(जो अनुचुम्बकीय है)
$\mathrm{K}+\mathrm{O}_{2}$ (आधिक्य) $\rightarrow \mathrm{KO}_{2}$ (O_{2}^{-}अनुचुम्बकीय है)
$\mathrm{Cu}+$ तनु $\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}(\mathrm{NO}$ अनुचुम्बकीय है)
$\mathrm{O}_{2}+2$-एथिलएन्थ्राक्यूनॉल $\rightarrow 2$-एथिलएन्थ्राक्यूनॉल $+\mathrm{H}_{2} \mathrm{O}_{2}$ (प्रतिचुम्बकीय)
अतः उत्तर $(A),(B),(C)$ है।
23. In the reaction shown below, the major product(s) formed is/are

निम्नलिखित अभिक्रिया का (के) मुख्य उत्पाद है (हैं) :

(A)

(B)

(C)

(D)

Ans. (A)

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Sol.

$+$

since $-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ is more basic.
The resulting amide will fail to react further. Had it been possible, imied formation would have occured at both the sites.
 also results.

हल.

$+$

क्योंकि $-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ अधिक क्षारीय है।
परिणामी एमाइड आगे क्रिया नहीं करेगा। ऐसा इसलिए संभव हो पाता है कि दोनों सतहो पर इमाइड का निर्माण होता है।

24. In a galvanic cell, the salt bridge
(A) does not participate chemically in the cell reaction.
(B) stops the diffusion of ions from one electrode to another.
(C) is necessary for the occurrence of the cell reaction.
(D ensures mixing of the two electrolytic solutions.
गैल्वानिक सेल में, लवण सेतु (salt bridge)
(A) सैल अभिक्रिया में रसायनतः भाग नहीं लेता।
(B) आयनों का विसरण एक इलेक्ट्रोड से दूसरे इलेक्ट्रोड पर बन्द करता है।
(C) सेल अभिक्रिया होने के लिए अनिवार्य है।
(D दोनों विद्युत-अपघटनी (electrolytic) विलयन का मिश्रणता को सुनिश्चित करता है।
Ans. (A)

Resonance Eduventures Pvt. Ltd

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Sol. Salt bridge is introduced to keep the solutions of two electrodes separate, such that the ions in electrode do not mix freely with each other. But it cannot stop the process of diffusion.
It does not participate in the chemical reaction. However, it is not necessary for occurence of cell reaction, as we know that designs like lead accumulator, there was no salt bridge, but still reactions takes place.
हल. दो इलेक्ट्रॉड के विलयन को पृथक रखने के लिए लवण सेतु को इस प्रकार लिया जाता है कि इलेक्ट्रॉड में आयन एक दूसरे के विलयन में मुक्त रूप से मिश्रित ना हो। लेकिन इससे विसरण का प्रक्रम नहीं रूकना चाहिए। यह रासायनिक अभिक्रिया में भाग नहीं लेता है। यद्यपि सेल अभिक्रिया होने के लिए यह अनिवार्य नहीं है। जैसा कि हम सीसा संचायक के निर्माण को जानते हैं कि यहां कोई लवण सेतु नहीं है, लेकिन तब भी अभिक्रिया होती है।
25. Upon heating with $\mathrm{Cu}_{2} \mathrm{~S}$, the reagent(s) that give copper metal is/are

वह (वे) अभिकर्मक (reagent) जो $\mathrm{Cu}_{2} \mathrm{~S}$ के साथ गरम करने पर कॉपर धातु देता है (देते हैं) :
(A) CuFeS_{2}
(B) CuO
(C) $\mathrm{Cu}_{2} \mathrm{O}$
(D) CuSO_{4}

Ans. (BCD)
Sol. $\mathrm{Cu}_{2}+2 \mathrm{Cu}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
$\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{CuO} \longrightarrow 4 \mathrm{Cu}+\mathrm{SO}_{2}$
$\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{CuSO}_{4} \longrightarrow 3 \mathrm{Cu}+2 \mathrm{SO}_{2}$
26. Hydrogen bonding plays a central role in the following phenomena :
(A) Ice floats in water.
(B) Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions.
(C) Formic acid is more acidic than acetic acid.
(D) Dimerisation of acetic acid in benzene.

हाइड्रोजन बन्ध निम्न परिघट्टन/परिघट्टनों में केन्द्रीय भूमिका निभाता है :
(A) बर्फ पानी में तैरती है।
(B) जलीय विलयन (solution) में तृतीयक एमीन की अपेक्षा प्राथमिक एमीन की अधिक लुईस क्षारकता।
(C) एसीटिक अम्ल की अपेक्षा फार्मिक अम्ल अधिक अम्लीय है।
(D) बेन्जीन में एसीटिक अम्ल का द्वितयन (dimerisation)।

Ans. (ABD)
Sol. Ice is less dense than water due to open crystal structure because of H -bonding.
The basicity of 1° amines is more than 3° amines as after they donate lone pair to H^{+}, they can form $\mathrm{H}-$ bonding with $\mathrm{H}_{2} \mathrm{O}$ molecules and get easily stabilized by solvation. Where as in tertiary amines, the stabilization by solvation is very less.
The dimerisation of acetic acid in benzene is due to H -bonding

Hence ans is: A, B, D
हल. खुली संरचना के कारण बर्फ का घनत्व जल से कम होता है क्योंकि इसमें H -हाइड्रोजन-बंध होता है, 1° ऐमीन की क्षारकता 3° ऐमीन से अधिक होती है। इसके बाद H^{+}में एकाकी युग्म देने के पश्चात वे $\mathrm{H}_{2} \mathrm{O}$ अणु के साथ $\mathrm{H}-ब न ् ध न ~ ब न ा ~ स क त े ~ ह ै ~ त थ ा ~ व ि ल ा य क न ~$ द्वारा आसानी से स्थायीकृत हो जाता है। जहाँ तृतीयक एमीन में विलायकन द्वारा स्थायीकरण बहुत कम होता है।
H -बन्धन के कारण बेन्जीन में एसीटिक अम्ल का द्विलकीकरण होता है।

अतः उत्तर : A, B, D है।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
27. The reactivity of compound \mathbf{Z} with different halogens under appropriate conditions is given below :

The observed pattern of electrophilic substitution can be explained by
(A) the steric effect of the halogen
(B) the steric effect of the tert-butyl group
(C) the electronic effect of the phenolic group
(D) the electronic effect of the tert-butyl group

यौगिक \mathbf{Z} की भिन्न-भिन्न हैलोजनों के साथ अभिक्रियाशीलता उपयुक्त शर्तो में नीचे दर्शित है:

इले क्ट्रानस्नेही प्रतिस्थापन (electrophilic substitution) से प्राप्त पैटर्न को स्पष्टीकृत किया जा सकता है
(A) हैलोजन के त्रिविमी प्रभाव (steric effect) द्वारा
(B) तृतीयक-ब्यूटाइल समूह के त्रिविमी प्रभाव द्वारा
(C) फिनॉलिक समूह के इलेक्ट्रॉनिक प्रभाव द्वारा
(D) तृतीयक-ब्यूटाइल समूह के इलेक्ट्रॉनिक प्रभाव द्वारा

Ans. (ABC)

Sol.

-OH group is strongly activating \& $\mathrm{O}, \mathrm{P}-$ directing due to its powerful +M effect.

With I_{2} only A is substituted, since $-I$ is large, steric inhibition by large $-\mathrm{CMe}_{3}$ group forbids substitution at B or C.
-Br and -Cl become progessively more reactive, due to-
(a) increasing electrophilic nature of X^{\oplus} (not mentioned is any option).
(b) Smaller size most sterically hindered loaction is B which is substituted only by -Cl .

हल.
 -OH समूह इसके प्रबल +M प्रभाव के कारण प्रबलतम सक्रियणकारी व O, P निर्देशी होता है।
I_{2} के साथ केवल A प्रतिस्थापित होता है क्योंकि -I बड़ा होता है, बडे $-\mathrm{CMe}_{3}$ समूह की त्रिविम बाधा के द्वारा B या C पर प्रतिस्थापन को निषेध करता है।
-Br तथा -Cl मुख्य रूप से अधिक क्रियाशील होते है, जिसका कारण यह है ;
(a) X^{\oplus} की इलेक्ट्रान स्नेही प्रकृति बढ़ती है (किसी भी विकल्प में यह नहीं है।)
(b) छोटे आकार द्वारा सर्वाधिक त्रिविम बाधित स्थान B है जो केवल -Cl द्वारा प्रतिस्थापित है।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

[^0]28. The correct combination of names for isomeric alcohols with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ is/are
(A) tert-butanol and 2-methylpropan-2-ol
(B) tert-butanol and 1, 1-dimethylethan-1-ol
(C) n-butanol and butan-1-ol
(D) isobutyl alcohol and 2-methylpropan-1-ol

आणविक सूत्र $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ वाले समावयवी (isomeric) ऐल्कोहॉलों के सही नामों के संयुक्त है (हैं) :
(A) तृतीयक-ब्यूटेनॉल (tert-butanol) एवं 2-मेशिलप्रोपेन-2-ऑल
(B) तृतीयक-ब्यूटेनॉल एंव 1, 1-डाइमेथिलईथेन-1-ऑल
(C) n-ब्यूटेनॉल एंव butan-1-ऑल
(D) आइसोब्यूटिल एल्कोहॉल एवं 2-मेथिलप्रोपेन-1-ऑल

Ans. (ACD)
Sol. Alcohols with formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ are -

1-Butanol

2-Butanol

Isobutyl alcohol or 2-Methylpropan-1-ol

हल. सूत्र $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ के एल्कोहल निम्न है :

1-ब्यूटेनॉल

आइसोब्यूटिल एल्कोहॉल
या 2 -मेथिलप्रोपेन-1-ऑल

t-Butyl alcohol or 2-Methylbutan-2-ol (Not 1,1-Dimethylethan-1-ol)

तृतीय ब्यूटिल एल्कोहल या
2-मेथिलब्यूटेन-2-ऑल
(1,1 -डाइमेथिलऐथेन-1-ऑल नहीं)
29. An ideal gas in a thermally insulated vessel at internal pressure $=P_{1}$, volume $=V_{1}$ and absolute temperature $=T_{1}$ expands irreversibly against zero external pressure, as shown in the diagram. The final internal pressure, volume and absolute temperature of the gas are P_{2}, V_{2} and T_{2}, respectively. For this expansion,

उष्मारोधी (thermally insulated) बर्तन में एक आदर्श गैस आन्तरिक दबाव $=P_{1}$, आयतन $=V_{1}$ तथा परमताप $=T_{1}$ पर शून्य बाहय दबाव के विरूद्व नीचे दर्शाये चित्रानुसार अनुत्क्रमणीय (irreversibly) प्रसारित होती है। गैस का आखिरी आन्तरिक दबाव, आयतन एवं परमताप क्रमशः P_{2}, V_{2} तथा T_{2}, है। इस विस्तारण के लिए

(A) $q=0$
(B) $T_{2}=T_{1}$
(C) $P_{2} V_{2}=P_{1} V_{1}$
(D) $P_{2} V_{2}^{\gamma}=P_{1} V_{1}^{\gamma}$

Ans. (ABC)

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Sol．Since the vessel is thermally insulated so
$q=0$
$p_{\text {ext }}=0$ ，so $w=0$
so $\Delta U=0 \quad$（ideal gas）
Hence $\Delta T=0$
$\Rightarrow \Delta T=0 \quad \Rightarrow T_{2}=T_{1} \quad \Rightarrow P_{2} V_{2}=P_{1} V_{1}$
The process is however adiabatic irriversible．
So we cannot apply $\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}=\mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}$
Hence ans is（A），（B），（C）
हल．क्योंकि पात्र ऊष्मारोधी है।
$\mathrm{q}=0$
$p_{\text {ext }}=0$ ，so w $=0$
so $\Delta U=0 \quad$（आदर्श गैस）
अतः $\Delta T=0$
$\Rightarrow \Delta T=0 \quad \Rightarrow T_{2}=T_{1} \quad \Rightarrow P_{2} V_{2}=P_{1} V_{1}$
यह प्रक्रम यद्यपि रूद्वोष्मीय रूप से अनुत्क्रमणीय है।
अतः हम यह प्रयुक्त नहीं कर सकते $\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}=\mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\gamma}$
अतः उत्तर $(A),(B),(C)$ है।
30．The correct statement（s）for orthoboric acid is／are
（A）It behaves as a weak acid in water due to self ionization．
（B）Acidity of its aqueous solution increases upon addition of ethylene glycol．
（C）It has a three dimensional structure due to hydrogen bonding．
（D）It is weak electrolyte in water．
आर्थोबोरिक अम्ल के लिए सही कथन है（हैं）：
（A）यह स्वतः आयनन（ionization）के कारण दुर्बल अम्ल की तरह व्यवहार करता है।
（B）इसके जलीय विलयन में एथिलीन ग्लाइकॉल डालने से अम्लीयता बढ़ती है।
（C）हाइड्रोजन बन्ध के कारण यह त्रिविम（three dimensional）संरचना रखता है।
（D）जल में यह दुर्बल विद्युत－अपघट्य（electrolyte）है।
Ans．（BD）
Sol． $\mathrm{H}_{3} \mathrm{BO}_{3}$ does not undergo self ionization．
On adding cis－diols，they form complexing species with orthoboric acid．
Hence the acidity increases on adding ethylene glycol．
$\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}$

It arranges into planar sheets due to H －bonding．
Hence，it has 2－dimensional structure due to H －bonding．
It acts as a weak acid in water，so it is a weak electrolyte in water
हल． $\mathrm{H}_{3} \mathrm{BO}_{3}$ का स्वतः आयनन नहीं होता है।
समपक्ष－डाइऑल मिलाने पर，वे ऑर्थोबोरिक अम्ल के साथ संकुल स्पीशीज बनाते है
अतः एथिलीन ग्लाईकॉल मिलाने पर अम्लीयता बढती है।
$\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}$

यह H －बन्धन के कारण समतलीय परत में विन्यासीत रहता है।
अतः H －बन्धन के कारण 2－विमिय संरचना रखता है।
यह जल में दुर्बल अम्ल की तरह व्यवहार करता है अतः यह जल में एक दुर्बल विद्युत अपघट्य है।

Resonance Eduventures Pvt．Ltd．

CORPORATE OFFICE ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005
Tel．No．：0744－3192222，3012222， 3022222 ｜Toll Free ： 18002002244 ｜To Know more ：sms RESO at 56677 Website ：www．resonance．ac．in｜Email ：contact＠resonance．ac．in

SECTION - 2 : (One Integer Value Correct Type)

खण्ड-2 : (एक पूर्णांक मान सही प्रकार)
This section contains 10 questions. Each question, when worked out will result in one integer from 0 to 9 (both inlusive).
इस खण्ड में 10 प्रश्न हैं। प्रत्येक प्रश्न को हल करने पर परिणाम 0 से 9 (दोनों शामिल) के बीच का एक पूर्णांक मान होगा।
31. In an atom, the total number of electrons having quantum numbers $n=4,\left|m_{\ell}\right|=1$ and $m_{s}=-1 / 2$ is
एक परमाणु में क्वाण्टम संख्या $n=4,\left|m_{\ell}\right|=1$ तथा $m_{s}=-1 / 2$ रखने वाले इलेक्ट्रानों की सम्पूर्ण संख्या है :
Ans. 6
Sol. $\quad \mathrm{n}=4, \quad \mathrm{~m}_{\ell}=1,-1$
Hence ℓ can be $\quad=3,2,1$
$\begin{array}{llll}\text { i.e. } & \mathrm{H}_{\mathrm{f}} & ; & 2 \text { orbitals } \\ & \mathrm{H}_{\mathrm{d}} & ; & 2 \text { orbitals } \\ & \mathrm{H}_{\mathrm{o}} & ; & 2 \text { orbitals }\end{array}$
Hence total of 6 orbitals, and we want $m_{s}=-\frac{1}{2}$, that is only one kind of spin. So, 6 electrons.
Sol. $\quad \mathrm{n}=4, \quad \mathrm{~m}_{\ell}=1,-1$
अतः $\ell=3,2,1$ हो सकते है।
$\begin{array}{llll}\text { i.e. } & H_{f} & ; & 2 \text { कक्षक } \\ & H_{d} & ; & 2 \text { कक्षक } \\ & H_{p} & ; & 2 \text { कक्षक }\end{array}$
अतः कुल 6 कक्षक है व हम $\mathrm{m}_{\mathrm{s}}=-\frac{1}{2}$ लेते है, जो कि केवल एक प्रकार का प्रचक्रण है।
32. The total number of distinct naturally occurring amino acids obtained by complete acidic hydrolysis of the peptide shown below is
नीचे दर्शाये पेप्टाइड के पूर्ण अम्लीय जल-अपघटन से प्राप्त भिन्न प्राकृतिक एमीनो अम्लों की सम्पूर्ण संख्या है :

Ans. 1

Sol.

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

This solution was download from Resonance JEE ADVANCED 2014 Solution portal

Thus, the acids are (अतः निम्न अम्ल प्राप्त होते है)

Amongst hense, only glycine is naturally occurring.
(अतः इनमें से केवल ग्लायसीन ही प्राकृतिक रूप से पाया जाता है।)
33. If the value of Avogadro number is $6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and the value of Boltzmann constant is $1.380 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$, then the number of significant digits in the calculated value of the universal gas constant is
यदि आवोगाद्रो संख्या का मान $6.023 \times 10^{23} \mathrm{~mol}^{-1}$ है तथा बोल्ट्स्समान रिथरांक का मान $1.380 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ है, तब परिकलित सार्वत्रिक गैस रिथरांक (universal gas constant) में सार्थक अंकों (significant digits) की संख्या है :
Ans. 4
Sol. $K=\frac{R}{N_{A}} \quad \therefore R=k . N_{A}$

$$
=6.023 \times 10^{23} \times 1.380 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{k}^{-1}
$$

There are 4 significant figures in each term. (यहॉ प्रत्येक पद में 4 सार्थक अंक है।) Hence, these be 4 significant figure in R. (अतः R में चार सार्थक अंक होगे।)
34. A compound $\mathbf{H}_{2} \mathbf{X}$ with molar weight of 80 g is dissolved in a solvent having density of $0.4 \mathrm{~g} \mathrm{ml}^{-1}$. Assuming no change in volume upon dissolution, the molality of a 3.2 molar solution is मोलर भार 80 g वाला एक यौगिक $\mathbf{H}_{2} \mathbf{X}, 0.4 \mathrm{~g} \mathrm{ml}^{-1}$ घनत्व वाले एक विलायक में घोला गया है। घुलने पर आयतन में कोई परिवर्तन न मानते हुए, 3.2 मोलर (molar) घोल की मोललता (molality) है :
Ans. 8
Sol. Given 3.2 M solution
\therefore moles of solute $=3.2 \mathrm{~mol}$
Consider 1 L Solution.

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
\therefore volume of solvent $=1 \mathrm{~L}$
$P_{\text {solvent }}=0.4 \mathrm{~g} \cdot \mathrm{~mL}^{-1} \quad \therefore \mathrm{~m}_{\text {solvent }}=P \times V=400 \mathrm{~g}$
\therefore molality $=\frac{3.2 \mathrm{~mol}}{0.4 \mathrm{~kg}}=8$ molal
हल. दिया है 3.2 M विलयन
\therefore विलेय के मोल $=3.2 \mathrm{~mol}$
1 L विलायक पर विचार करिये।
\therefore विलयन का आयतन $=1 \mathrm{~L}$
$\mathrm{P}_{\text {solvent }}=0.4 \mathrm{~g} \cdot \mathrm{~mL}^{-1} \quad \therefore \mathrm{~m}_{\text {solvent }}=\mathrm{P} \times \mathrm{V}=400 \mathrm{~g}$
\therefore मोललता $=\frac{3.2 \mathrm{~mol}}{0.4 \mathrm{~kg}}=8 \mathrm{molal}$
35. $\quad \mathbf{M X} \mathbf{X}_{2}$ dissociates into \mathbf{M}^{2+} and \mathbf{X}^{-}ions in an aqueous solution, with a degree of dissociation (α) of 0.5 . The ratio of the observed depression of freezing point of the aqueous solution to the value of the depression of freezing point in the absence of ionic dissociation is
$\mathbf{M X}_{2}$ एक जलीय विलयन में 0.5 की एक वियोजन मात्रा (degree of dissociation) α के साथ $\mathbf{M}^{\mathbf{2 +}}$ तथा \mathbf{X} - में वियोजित होता है। पाये गये जलीय विलयन के हिमांक अवनमन (depression of freezing point) तथा आयनिक वियोजन (depression) की अनुपस्थिति में हिमांक अवनमन का अनुपात है :
Ans. 2
Sol. $M X_{2} \rightleftharpoons \mathrm{M}^{2+}+2 \mathrm{X}^{-}$
$\mathrm{m}_{0}(1-\alpha) \quad \mathrm{m}_{0} \alpha \quad 2 \mathrm{~m}_{0} \alpha \quad ; \mathrm{m}=\mathrm{m}_{0}(1+2 \alpha)$
$\therefore \mathrm{m}=\mathrm{m}_{0}(1+2 \times 0.5)=2 \mathrm{~m}_{0} \quad$ (as given) (दिया गया है)
$\frac{\left(-\Delta T_{f}\right)_{\text {observed }}}{\left(-\Delta T_{f}\right)_{\text {undissociated }}}=i=\frac{m}{m_{0}}=2$
36. Consider the following list of reagents:

Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, alkaline $\mathrm{KMnO}_{4}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{3}, \mathrm{FeCl}_{3}, \mathrm{HNO}_{3}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The total number of reagents that can oxidise aqueous iodide to iodine is
निम्नलिखित अभिकर्मकों की सूची पर विचार करें :
अम्लीय $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, क्षारीय $\mathrm{KMnO}_{4}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{3}, \mathrm{FeCl}_{3}, \mathrm{HNO}_{3}$ और $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
जलीय आयोडाइड को आयोडीन में ऑक्सीकृत करने वाले अभिकर्मकों की सम्पूर्ण संख्या बतायें।
Ans. 7
Sol. I- to I_{2} oxidation can be done by acidfied $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}$
I^{-}का I_{2} में ऑक्सीकरण अम्लीकृत $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}$ द्वारा किया जा सकता है।
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \longrightarrow 2 \mathrm{CuI} \downarrow+\mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}$
$2 \mathrm{KI}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
$\mathrm{H}_{2} \mathrm{O}+2 \mathrm{KI}+\mathrm{O}_{3} \longrightarrow 2 \mathrm{KOH}+\mathrm{O}_{2}+\mathrm{I}_{2}$
$\mathrm{FeCl}_{3}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KCl}+\mathrm{FeCl}_{2}+\mathrm{I}_{2}$
$\mathrm{HNO}_{3}+\mathrm{KI} \longrightarrow \mathrm{KNO}_{3}+\mathrm{I}_{2}+\mathrm{NO} \uparrow$
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{KI} \longrightarrow$ no reaction. (कोई अभिक्रिया नहीं)

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Note : In $\mathrm{H}_{2} \mathrm{O}_{2} \& \mathrm{O}_{3}$, I^{-}to I_{2} oxidation will occur intially.
नोट : $\mathrm{H}_{2} \mathrm{O}_{2}$ व O_{3}, में, प्रारम्भ में I^{-}का I_{2} में ऑक्सीकरण होगा।
However as concentration of KOH builds up, it will begin causing disproportionation of resulting I_{2} to IO_{3}^{-}.
यद्यपि KOH की सान्द्रता होती है इसके फलस्वरूप I_{2} से IO_{3}^{-}में विषमानुपातीकरण प्रारम्भ होगा।
37. The total number(s) of stable conformers with non-zero dipole moment for the following compound is (are)
निम्नलिखित यौगिक में शून्येतर द्विध्रुव आघूर्ण (non-zero dipole moment) वाले स्थायी संरूपणीय समावयवों (conformers) की सम्पूर्ण संख्या है :

Ans. 3

Sol.

$=$

Three stable (staggared) conformers exist (with $\mu \neq 0$)
तीन स्थायी (सांतरित) संरूपी समावयवी पाये जाते है। (जिनका $\mu \neq 0$)
38. Among $\mathrm{PbS}, \mathrm{CuS}, \mathrm{HgS}, \mathrm{MnS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{NiS}, \mathrm{CoS}, \mathrm{Bi}_{2} \mathrm{~S}_{3}$ and $\mathrm{SnS} \mathrm{S}_{2}$, the total number of BLACK coloured sulphides is
$\mathrm{PbS}, \mathrm{CuS}, \mathrm{HgS}, \mathrm{MnS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{NiS}, \mathrm{CoS}, \mathrm{Bi}_{2} \mathrm{~S}_{3}$ और SnS_{2} में से काले रंग के सल्फाइडों की सम्पूर्ण संख्या कितनी है ?
Ans. 7
Sol. Pbs , CuS , $\mathrm{HgS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{NiS}, \mathrm{CoS}, \mathrm{Bi}_{2} \mathrm{~S}_{3}$, are black (7)
$\mathrm{Pbs}, \mathrm{CuS}, \mathrm{HgS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{NiS}, \mathrm{CoS}, \mathrm{Bi}_{2} \mathrm{~S}_{3}$, काले (7) है।
MnS : buff. colored, SnS_{2} : yellow. (पीला)
39. Consider all possible isomeric ketones, including stereoisomers of MW = 100. All these isomers are idependently reacted with NaBH_{4} (NOTE : stereoisomers are also reacted separately). The total number of ketones that give a racemic product(s) is/are
त्रिविम समावयवों (stereoisomers) को सम्मिलित करते हुए अणु भार $=100$ वाले सभी समावयवी कीटोनों पर विचार कीजिए। इन सभी समावयवों को NaBH_{4} से स्वतंत्र रूप से अभिकृत किया गया (नोट : त्रिविम समावयवों को भी अलग से अभिकृत किया गया)। रेसिमिक उत्पाद देने वाले उन कीटोनों की सम्पूर्ण संख्या बतायें।
Ans. 5

Resonance Eduventures Pvt. Ltd.
cORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 \| Toll Free : 18002002244
Website : www.resonance.ac.in \| Email : contact@resonance.ac.in

[^1]Sol.
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}, \mathrm{M}_{\mathrm{w}}=12 \mathrm{n}+2 \mathrm{n}+16=100$
$\therefore 14 n=84$
$\therefore \mathrm{n}=6$

Six such ketones exist : (छ: किटोन उपस्थित है :)

$(+) \&(-)$
(+) \& (-)
(+) \& (-)
(+) \& (-)
diastere.
$(+) \&(-) \quad$ diaste.
(विवरिमरूपी)
(विवरिमरूपी)

Thus, 5 such ketones give a racemic mixture. (इस प्रकार 5 किटोन रेसेमिक मिश्रण देते है।)
40. Alist of species having the formula XZ_{4} is given below.
$\mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{SiF}_{4} \cdot \mathrm{BF}_{4}^{-}, \mathrm{BrF}_{4}^{-},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+},\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{PtCl}_{4}\right]^{2-}$.
Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is
सूत्र XZ_{4} वाले पदार्थों की सूची नीचे दी गयी है :
$\mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{SiF}_{4} . \mathrm{BF}_{4}^{--}, \mathrm{BrF}_{4}^{--},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+},\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{2-}$ तथा $\left[\mathrm{PtCl}_{4}\right]^{2-}$.
X तथा Z परमाणुओं की स्थिति के आधार पर आकृति का सीमांकन करते हुए वर्ग समतली (square planar) आकृति वाली स्पीशीज की सम्पूर्ण संख्या बतायें।
Ans. 4

Sol. $\mathrm{XeF}_{4}=$
 Square planar (sp $\left.{ }^{3} d^{2}\right) \quad$ वर्गसमतलीय $\left(s p^{3} d^{2}\right)$
 See-saw (spd) सीसॉ (sp $\left.{ }^{3} \mathrm{~d}\right)$

Tetrahedral (sp^{3}) चतुष्फलकीय $\left(\mathrm{sp}^{3}\right)$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Square planar（ $\left.\mathrm{sp}^{3} \mathrm{~d}^{2}\right)$ वर्गसमतलीय（ $\mathrm{sp}^{3} \mathrm{~d}^{2}$ ）

Square planar（ dsp^{2} ）वर्गसमतलीय（ dsp^{2} ）
$\left[\mathrm{FeCl}_{4}\right]^{2-}=$

Tetrahedral（ sp^{3} ）चतुष्फलकीय $\left(\mathrm{sp}^{3}\right)$

Tetrahedral（sp ${ }^{3}$ ）चतुष्फलकीय $\left(\mathrm{sp}^{3}\right)$

Square planar（ dsp^{2} ）वर्गसमतलीय（ dsp^{2} ）

Resonance Eduventures Pvt．Ltd．

SECTION - 1 : (One or More Than One Options Correct Type)

खण्ड-1: (एक या एक से अधिक सही विकल्प प्रकार)
This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE THAN ONE are correct.
इस खण्ड में 10 बहुविकल्प प्रश्न हैं। प्रत्येक प्रश्न में चार विकल्प $(A),(B),(C)$ और (D) हैं, जिनमें से एक या एक से अधिक सही है।
41. Let $f:[a, b] \rightarrow[1, \infty)$ be a continuous function and let $g: R \rightarrow R$ be defined as
$g(x)=\left\{\begin{array}{lll} & \text { if } & x<a, \\ 0 & & \\ \int_{a}^{x} f(t) d t & \text { if } & a \leq x \leq b, \\ a_{a}^{b} f(t) d t & \text { if } & x>b . \\ \int_{a}^{b},\end{array}\right.$
(A) $g(x)$ is continuous but not differentiable at a
(B) $g(x)$ is differentiable on R
(C) $g(x)$ is continuous but not differentiable at b
(D) $g(x)$ is continuous and differentiable at either a or b but not both

माना कि $f:[a, b] \rightarrow[1, \infty)$ एक संतत फलन है तथा $g: R \rightarrow R$ निम्नानुसार
$g(x)=\left\{\begin{array}{lll} & & \\ 0 & \text { यदि } & x<a, \\ \int_{a}^{x} f(t) d t & \text { यदि } & a \leq x \leq b, \text { परिभाषित है, तब } \\ \int_{a}^{b} f(t) d t & \text { यदि } & x>b .\end{array}\right.$
(A) a पर $\mathrm{g}(\mathrm{x})$ संतत (continuous) है परन्तु अवकलनीय (differentiable) नहीं है।
(B) R पर $g(x)$ अवकलनीय है।
(C) b पर $g(x)$ संतत है परन्तु अवकलनीय नहीं है।
(D) a या b पर $g(x)$ संतत एवं अवकलनीय है परन्तु दोनों पर नही।

Ans. (AC)

Resonance Eduventures Pvt. Ltd.

Sol. It may be discontinuous at $\mathrm{x}=\mathrm{a}$ or $\mathrm{x}=\mathrm{b}$
$\lim _{x \rightarrow a^{-}} g(x)=0$
$\lim _{x \rightarrow a^{+}} g(x)=\lim _{x \rightarrow a^{+}} \int_{a}^{x} f(t) d t=\int_{a}^{a} f(t) d t=0$
$g(a)=\int_{a}^{a} f(t) d t=0$
Similarly at $x=b$ we will get continuous
So $g(x)$ is continuous $\forall x \in R$
$g^{\prime}(x)=\left[\begin{array}{cc}0 & x<a \\ f(x) & a \leq x \leq b \\ 0 & x>b\end{array}\right.$
$g^{\prime}\left(a^{-}\right)=0 \quad g^{\prime}\left(b^{-}\right)=f(b)$
$g^{\prime}\left(a^{+}\right)=f(a) \quad g^{\prime}\left(b^{+}\right)=0$
Since $f(x)$ co-domain is $[1, \infty) f(a) \& f(b)$ can never be zero.
Hence it is non derivable at $x=a \& x=b$.
Hindi. यह $x=a$ या $x=b$ पर यह असतत् हो सकता है।

$$
\begin{aligned}
& \lim _{x \rightarrow a^{-}} g(x)= \\
& \lim _{x \rightarrow a^{+}}+g(x)=\lim _{x \rightarrow x^{+}}+\int_{a}^{x} f(t) d t=\int_{a}^{a} f(t) d t=0
\end{aligned}
$$

$g(a)=\lim _{x \rightarrow x^{+}}+\int_{a}^{a} f(t) d t=0$
इसी प्रकार $\mathrm{x}=\mathrm{b}$ पर यह सतत् होगा
अतः $\mathrm{g}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{R}$ पर सतत् है
$g^{\prime}(x)=\left[\begin{array}{cc}0 & x<a \\ f(x) & a \leq x \leq b \\ 0 & x>b\end{array}\right.$
$g^{\prime}\left(a^{-}\right)=0 \quad g^{\prime}\left(b^{-}\right)=f(b)$
$g^{\prime}\left(a^{+}\right)=f(a) \quad g^{\prime}\left(b^{+}\right)=0$
चूंकि $f(x)$ का सहप्रान्त $[1, \infty) f(a)$ तथा $f(b)$ शून्य नही हो सकते है
अतः $x=a$ व $x=b$ पर यह अवकलनीय नही है।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
42. For every pair of continuous functions $f, g:[0,1] \rightarrow R$ such that $\max \{f(x): x \in[0,1]\}=\max \{g(x): x \in[0,1]\}$,
the correct statement(s) is (are) :
(A) $(f(c))^{2}+3 f(c)=(g(c))^{2}+3 g(c)$ for some $c \in[0,1]$
(B) $(\mathrm{f}(\mathrm{c}))^{2}+\mathrm{f}(\mathrm{c})=(\mathrm{g}(\mathrm{c}))^{2}+3 \mathrm{~g}(\mathrm{c})$ for some $\mathrm{c} \in[0,1]$
(C) $(f(c))^{2}+3 f(c)=(g(c))^{2}+g(c)$ for some $c \in[0,1]$
(D) $(\mathrm{f}(\mathrm{c}))^{2}=(\mathrm{g}(\mathrm{c}))^{2}$ for some $\mathrm{c} \in[0,1]$

संतत फलनों (Continuous functions) के प्रत्येक युग्म (pair) $f, g:[0,1] \rightarrow R$ जिनके लिये अधिकतम
$\{f(x): x \in[0,1]\}=$ अधिकतम $\{g(x): x \in[0,1]\}$ है, के लिये सत्य कथन है(हैं)
(A) किसी $c \in[0,1]$ के लिये $(f(c))^{2}+3 f(c)=(g(c))^{2}+3 g(c)$
(B) किसी $c \in[0,1]$ के लिये $(f(c))^{2}+f(c)=(g(c))^{2}+3 g(c)$
(C) किसी $c \in[0,1]$ के लिये $(f(c))^{2}+3 f(c)=(g(c))^{2}+g(c)$
(D) किसी $c \in[0,1]$ के लिये $(f(c))^{2}=(g(c))^{2}$

Ans. (AD)
Sol. Consider
$h(x)=f(x)-g(n)$ Assume $\quad a<b$
$h(a)=\lambda-g(a)>0$
$h(b)=f(b)-\lambda<0$
else if $a>b h(a)<0$ and $h(b)>0$.
By intermediate value theorem $\Rightarrow \mathrm{h}(\mathrm{c})=0$
(A) $\quad(\mathrm{f}(\mathrm{c}))^{2}+3 \mathrm{f}(\mathrm{c})=(\mathrm{g}(\mathrm{c}))^{2}+3 \mathrm{~g}(\mathrm{c})$
$(f(c)-g(c))(f(c)+g(c)+3)=0$
So there exist a 'c' : f(c) - g(c)
from (1).
Hence A is correct.
(D) \quad Similarly $(\mathrm{f}(\mathrm{c}))^{2}=(\mathrm{g}(\mathrm{c}))^{2}$
$(f(c)-g(c))(f(c)+g(c))=0$
$\Rightarrow \quad(\mathrm{D})$ is correct.
$B \& C$ are wrong as by counter eg
If $f(x)=g(x)=\lambda \neq 0$, then
$B \rightarrow \lambda^{2}+\lambda=\lambda^{2}+3 \lambda$ is not possible.
$\mathrm{C} \rightarrow \lambda^{2}+3 \lambda=\lambda^{2}+\lambda$ is not possible.
Hindi. मानाकि
$(x)=f(x)-g(n)$ माना $a<b$
$h(a)=\lambda-g(a)>0$
$h(b)=f(b)-\lambda<0$
अतः $a>b h(a)<0$ तथा $h(b)>0$.
लाग्रांज माध्यमान प्रमेय से $\Rightarrow h(c)=0$
(A) $\quad f^{2}+3 f=g^{2}+3 g$
$(f-g)(f+g+3)=0$
अतः a ' c ' : $f(c)-g(c)$ विद्यमान है
(1) से

अतः A सही है।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
(D) इसी प्रकार $(\mathrm{f}(\mathrm{c}))^{2}=(\mathrm{g}(\mathrm{c}))^{2}$

$$
\begin{aligned}
& (\mathrm{f}(\mathrm{c})-\mathrm{g}(\mathrm{c}))(\mathrm{f}(\mathrm{c})+\mathrm{g}(\mathrm{c}))=0 \\
& \Rightarrow \quad(\mathrm{D}) \text { सही है }
\end{aligned}
$$

B व C गलत है निम्न उदाहरण से
यदि $f(x)=g(x)=\lambda \neq 0$ तब
$B \rightarrow \lambda^{2}+\lambda=\lambda^{2}+3 \lambda$ संभव नही है
$\mathrm{C} \rightarrow \lambda^{2}+3 \lambda=\lambda^{2}+\lambda$ संभव नही है
43. Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if
(A) the first column of M is the transpose of the second row of M
(B) the second row of M is the transpose of first column of M
(C) M is a diagonal matrix with nonzero entries in the main diagonal
(D) the product of entries in the main diagonal of M is not the square of an integer

माना कि 2×2 सममित आव्यूह (symmetric matrix) M के सभी अवयव (elements) पूर्णांक (integer) हैं। तब M व्युत्क्रमणीय (invertible) है, यदि
(A) M का पहला स्तम्भ M की दूसरी पक्ति का परिवर्त (transpose) है।
(B) M की दूसरी पंक्ति M के पहले स्तम्भ का परिवर्त है।
(C) M एक विकर्ण आव्यूह (diagonal matrix) है जिसके मुख्य विकर्ण (main diagonal) के अवयव शून्यतर (non-zero) हैं
(D) M के मुख्य विकर्ण (main diagonal) के अवयवों का गुणनफल किसी भी पूणांक का वर्ग नहीं है।

Ans. (CD)
Sol. $M=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$
(A) $\left[\begin{array}{l}a \\ b\end{array}\right] \&[b$ c] are transpose.

So $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}b \\ c\end{array}\right]$ is given $\Rightarrow \quad a=b=c$
$M=\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \quad \Rightarrow \quad|M|=0 \quad$ A is wrong.
(B) $\quad[b \mathrm{c}] \&\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$ are transpose.

So $a=b=c \quad B$ is wrong
(C) $\quad \mathrm{M}=\left[\begin{array}{ll}\mathrm{a} & 0 \\ 0 & \mathrm{c}\end{array}\right] \quad \Rightarrow \quad|\mathrm{M}|=\mathrm{ac} \neq 0 \quad \mathrm{C}$ is correct
(D) $M=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ given $a c \neq \hat{\lambda}^{2}$. $\quad D$ is correct
(C, D) are correct.

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

Hindi. $M=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$
(A) $\left[\begin{array}{l}a \\ b\end{array}\right]$ तथा $[b c]$ परिवर्त आव्यूह

$$
\begin{aligned}
& {\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
b \\
c
\end{array}\right] \text { दिया है } \quad \Rightarrow \quad a=b=c} \\
& M=\left[\begin{array}{ll}
a & a \\
a & a
\end{array}\right] \quad \Rightarrow \quad|M|=0 \quad A \text { गलत है }
\end{aligned}
$$

(B) $[b c] \&\left[\begin{array}{l}a \\ b\end{array}\right]$ परिवर्त आव्यूह
$a=b=c$
B गलत है
(C) $M=\left[\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right] \Rightarrow|M|=a c \neq 0 \quad C$ सही है
(D) $M=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ given $a c \neq \lambda^{2} \quad D$ सही है
(C, D) सही है ।
44. Let \vec{x}, \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If \vec{a} is a nonzero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a nonzero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then
(A) $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
(B) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
(C) $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
(D) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$

माना कि सदिशों (vectors) \vec{x}, \vec{y} तथा \vec{z} में प्रत्येक का परिमाण $\sqrt{2}$ हैं तथा प्रत्येक युग्म (pair) के मध्य का कोण $\frac{\pi}{3}$ है। यदि शून्येतर (non-zero) सदिश \vec{a} सदिशों \vec{x} तथा $\vec{y} \times \vec{z}$ के लम्बवत् (perpendicular) है एवं शून्येतर सदिश \vec{b} सदिशों \vec{y} तथा $\vec{z} \times \vec{x}$ के लम्बवत् है, तब
(A) $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
(B) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
(C) $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
(D) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$

Ans. (ABC)
Sol. $\quad|\vec{x}|=|\vec{y}|=|\vec{z}|=\sqrt{2}$
$0=\frac{\pi}{3}$
$\vec{a}=\lambda \vec{x} \times(\vec{y} \times \vec{z})$
$\overrightarrow{\mathrm{b}}=\mu \overrightarrow{\mathrm{y}} \times(\overrightarrow{\mathrm{z}} \times \overrightarrow{\mathrm{x}})$
$\vec{a}=((\vec{x} . \vec{z}) \vec{y}-(\vec{x} . \vec{y}) \vec{z})$
$\vec{a}=\lambda\left(2 \times \frac{1}{2} \vec{y}-2 \times \frac{1}{2} \vec{z}\right)$
$\vec{a}=\lambda(\vec{y}-\vec{z})$
$\vec{b}=\mu(\vec{z}-\vec{x})$
Similarly इसी प्रकार
$\vec{a} . \vec{y}=\lambda\left(2-2 \times \frac{1}{2}\right)=\lambda$
$\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z}) \quad \Rightarrow \quad$ (B)
$\vec{b} . \vec{z}=\mu\left(2-2 \times \frac{1}{2}\right)$
$\mu=\vec{b} . \vec{z}$
$\therefore \vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x}) \quad \Rightarrow \quad$ (A)
(A) $\vec{a} \cdot \vec{b}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z}) \cdot(\vec{b} \cdot \vec{y})(\vec{z}-\vec{x})=(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})(\vec{y} \vec{z}-\vec{y} \vec{x}-2+\vec{x} \vec{z})=(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$

$$
=-(\vec{a} \cdot \vec{y})(\vec{b} . \vec{z}) \Rightarrow \quad(C
$$

45. From a point $P(\lambda, \lambda, \lambda)$, perpendiculars $P Q$ and $P R$ are drawn respectively on the lines $y=x, z=1$ and y $=-x, z=-1$. If P is such that $\angle Q P R$ is a right angle, then the possible value(s) of λ is(are)
(A) $\sqrt{2}$
(B) 1
(C) -1
(D) $-\sqrt{2}$

बिन्दु $P(\lambda, \lambda, \lambda)$ से रेखाओं $y=x, z=1$ तथा $y=-x, z=-1$ पर डाले गये लम्ब (perpendicular) क्रमशः $P Q$ तथा PR हैं। यदि $\angle \mathrm{QPR}$ समकोण (right angle) है, तो λ का(के) संभावित मान है(हैं)
(A) $\sqrt{2}$
(B) 1
(C) -1
(D) $-\sqrt{2}$

Ans. (C)
Sol. Line is
$\frac{x-0}{1}=\frac{y-0}{1}=\frac{z-0}{1}=\alpha$
$Q(\alpha, \alpha, 1)$
Direction ratio of $P Q$ are

$$
\lambda-\alpha, \lambda-\alpha, \lambda-1
$$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

Since $P Q$ is perpendicular to (1)

$$
\therefore \quad \lambda-\alpha+\lambda-\alpha+0=0
$$

$$
\lambda=\alpha
$$

$\therefore \quad$ Direction ratio of $P Q$ are
$0,0, \lambda-1$
Another line is
$\frac{x-0}{-1}=\frac{y-0}{1}=\frac{z+1}{0}=\beta$
$\therefore \quad R(-\beta, \beta,-1)$
$\therefore \quad$ Direction ratio of PR are

$$
\lambda+\beta, \lambda-\beta, \lambda+1
$$

Since $P Q$ is perpendicular to (ii)
$\therefore \quad-\lambda-\beta+\lambda-\beta=0$
$\beta=0$
$\therefore \quad R(0,0,-1)$
and Direction ratio of PQ are $\lambda, \lambda, \lambda+1$
Since $P Q \perp P R$
$\therefore \quad 0+0+\lambda^{2}-1=0 \Rightarrow \lambda= \pm 1 \Rightarrow B, C$
For $\lambda=1$ the point is on the line so it will be rejected.
$\Rightarrow \quad \lambda=-1$.
Hindi. रेखा
$\frac{x-0}{1}=\frac{y-0}{1}=\frac{z-0}{1}=\alpha$
$Q(\alpha, \alpha, 1)$
PQ के द्कि अनुपात

$$
\lambda-\alpha, \lambda-\alpha, \lambda-1
$$

चूंकि $P Q$, (1) के लम्बवत् है
$\therefore \quad \lambda-\alpha+\lambda-\alpha+0=0$
$\lambda=\alpha$
$\therefore \quad \mathrm{PQ}$ के द्कि अनुपात
$0,0, \lambda-1$
अन्य रेखा है
$\frac{x-0}{-1}=\frac{y-0}{1}=\frac{z+1}{0}=\beta$
$\therefore \quad \mathrm{R}(-\beta, \beta,-1)$
$\therefore \quad \mathrm{PR}$ के द्कि अनुपात

$$
\lambda+\beta, \lambda-\beta, \lambda+1
$$

चूंकि $P Q$, (ii) के लम्बवत् है

$$
\begin{array}{ll}
\therefore & -\lambda-\beta+\lambda-\beta=0 \\
& \beta=0 \\
\therefore & R(0,0,-1)
\end{array}
$$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

और PQ के दिक् अनुपात $\lambda, \lambda, \lambda+1$ है
चूंकि $P Q \perp P R$
$\therefore \quad 0+0+\lambda^{2}-1=0 \Rightarrow \lambda= \pm 1 \Rightarrow B, C$
$\lambda=1$ के लिए बिन्दु रेखा पर है इसलिए यह अस्वीकार्य होगा।
$\Rightarrow \quad \lambda=-1$.
46. Let M and N be two 3×3 matrices such that $M N=N M$. Further, if $M \neq N^{2}$ and $M^{2}=N^{4}$, then
(A) determinant of $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right)$ is 0
(B) there is a 3×3 non-zero matrix U such that $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) \mathrm{U}$ is the zero matrix
(C) determinant of $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) \geq 1$
(D) for a 3×3 matrix U , if $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) \mathrm{U}$ equals the zero matrix then U is the zero matrix

माना कि दो 3×3 आव्यूह (matrices) M तथा N इस प्रकार है कि $M N=N M$ है। यदि $M \neq N^{2}$ तथा $M^{2}=N^{4}$ हो, तो
(A) $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right)$ के सारणिक (determinant) का मान शून्य है।
(B) एक ऐसा 3×3 शून्येतर (non-zero) आव्यूह U है जिसके लिये $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) \mathrm{U}$ शून्य आव्यूह है।
(C) $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right)$ के सारणिक मान ≥ 1 है।
(D) 3×3 आव्यूह U जिसके लिये $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) \mathrm{U}$ शून्य आव्यूह है तो U भी एक शून्य आव्यूह होगा।

Ans. (AB)
Sol. $M N=N M \& M^{2}-N^{4}=0$

(A) $\quad\left|M^{2}+M N^{2}\right|=|M|\left|M+N^{2}\right|$
$=0$
(A) is correct
(B) If $|\mathrm{A}|=0$ then $\mathrm{AU}=0$ will have \propto solution.

Thus ($\mathrm{M}^{2}+\mathrm{MN}{ }^{2}$) $\mathrm{U}=0$ will have many ' U '
(B) is correct
(C) Obvious wrong.
(D) If $\mathrm{AX}=0 \&|\mathrm{~A}|=0$ then X can be non zero.
(D) is wrong

Hindi. $\mathrm{MN}=\mathrm{NM}$ तथा $\mathrm{M}^{2}-\mathrm{N}^{4}=0$

(A) $\quad\left|\mathrm{M}^{2}+\mathrm{MN}^{2}\right|=|\mathrm{M}|\left|\mathrm{M}+\mathrm{N}^{2}\right|$
$=0$
(A) सही है
(B) यदि $|\mathrm{A}|=0$ तब $\mathrm{AU}=0$ अनन्त हल रखेगा

अतः $\left(M^{2}+M N^{2}\right) U=0$ इसप्रकार के अनन्त ' U ' होंगें
(B) सही है
(C) स्पष्टतः गलत है।
(D) यदि $A X=0$ और $|A|=0$ तब X अशून्य हो सकता है ।
(D) गलत है।
47. Let $f:(0, \infty) \rightarrow R$ be given by $f(x)=\int_{\frac{1}{x}}^{x} e^{-\left(t t_{t}^{1}\right)} \frac{d t}{t}$. Then
(A) $f(x)$ is monotonically increasing on $[1, \infty)$
(B) $f(x)$ is monotonically decreasing on $(0,1)$
(C) $f(x)+f\left(\frac{1}{x}\right)=0$, for all $x \in(0, \infty)$
(D) $f\left(2^{x}\right)$ is an odd function of x on R

माना कि $f:(0, \infty) \rightarrow R$ निम्न के द्वारा $f(x)=\int_{\frac{1}{x}}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}$ परिभाषित है। तब
(A) [1, ∞) पर $f(x)$ एकदिष्ट वर्धमान (monotonically increasing) है।
(B) $(0,1)$ पर $f(x)$ एकदिष्ट ह्यसमान (monotonically increasing) है।
(C) सभी $x \in(0, \infty)$ के लिये, $f(x)+f\left(\frac{1}{x}\right)=0$
(D) R पर $f\left(2^{x}\right), x$ का एक विषम फलन(odd function) है।

Ans. (ACD)
Sol. $f(x)=\int_{1 / x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}$
$f^{\prime}(x)=\frac{e^{-\left(x+\frac{1}{x}\right)}}{x}+\frac{x}{x^{2}} e^{-\left(x+\frac{1}{x}\right)}$
$f^{\prime}(x)=\frac{2 e^{-\left(x+\frac{1}{x}\right)}}{x}$
(A) For $x \in[1, \infty) f^{\prime}(x)>0 \quad$ so (A) is correct.
(B) Obvious wrong.
(C) $f(x)+f(1 / x)=\int_{1 / x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}+\underbrace{\int_{x}^{1 / x} \frac{e^{-\left(t+\frac{1}{t}\right)}}{t}}_{\text {put } t=\frac{1}{p}} d t$
$\int_{1 / x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}-\int_{1 / x}^{x} e^{-\left(p+\frac{1}{p}\right)} \frac{d p}{p}=0$
(C) is correct
(D) \quad Since $f(x)=-f\left(\frac{1}{x}\right)$
$f\left(2^{x}\right)=-f\left(\frac{1}{2^{x}}\right)$
$f\left(2^{x}\right)=-f\left(2^{-x}\right)$
odd.
(D) is correct

ACD is answer
Hindi. $f(x)=\int_{1 / x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}$
$f^{\prime}(x)=\frac{e^{-\left(x+\frac{1}{x}\right)}}{x}+\frac{x}{x^{2}} e^{-\left(x+\frac{1}{x}\right)}$
$f^{\prime}(x)=\frac{2 e^{-\left(x+\frac{1}{x}\right)}}{x}$
(A) For $x \in[1, \infty) f^{\prime}>0$ अतः (A) सही है ।

स्पष्टतः (B) गलत है।
(C) $f(x)+f(1 / x)=\int_{1 / x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{d}+\underbrace{\int_{x}^{1 / x} \frac{e^{-\left(t+\frac{1}{t}\right)}}{t}}_{\text {put } t=\frac{1}{p}} d t$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

$$
\int_{1 / x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}-\int_{1 / x}^{x} e^{-\left(p+\frac{1}{p}\right)} \frac{d p}{p}
$$

(C) सही है
(D) चूंकि $f(x)=-f\left(\frac{1}{x}\right)$

$$
f\left(2^{x}\right)=-f\left(\frac{1}{2^{x}}\right)
$$

$$
f\left(2^{x}\right)=-f\left(2^{-x}\right)
$$

odd.
(D) सही है।

ACD सही उत्तर है।
48. Let $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R$ be given by $f(x)=(\log (\sec x+\tan x))^{3}$. Then
(A) $f(x)$ is an odd function
(B) $f(x)$ is a non-one function
(C) $f(x)$ is an onto function
(D) $f(x)$ is an even function

माना कि $\mathrm{f}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathrm{R}$ जहाँ $\mathrm{f}(\mathrm{x})=(\log (\sec \mathrm{x}+\tan \mathrm{x}))^{3}$ के द्वारा परिभाषित किया गया है। तब
(A) $f(x)$ विषम (odd) फलन है।
(B) $f(x)$ एकैकी (non-one) फलन है।
(C) $f(x)$ आच्छादक (onto) फलन है।
(D) $f(x)$ सम (even) फलन है।

Ans. (ABC)
Sol. (i) $f(-x)=-f(x)$ so it is odd function
(ii) $\quad f^{\prime}(x)=3(\log (\sec x+\tan x))^{2} \frac{1}{(\sec x+\tan x)}\left(\sec x \tan x+\sec ^{2} x\right)>0$
(iii) Range of $f(x)$ is R

$$
\text { as } \quad f\left(-\frac{\pi}{2}\right) \Rightarrow \quad-\infty
$$

$$
f\left(\frac{\pi}{2}\right) \Rightarrow \infty
$$

Hindi (i) $f(-x)=-f(x)$ इसलिए यह विषम फलन है।
(ii) $\quad f^{\prime}(x)=3(\log (\sec x+\tan x))^{2} \frac{1}{(\sec x+\tan x)}\left(\sec x \tan x+\sec ^{2} x\right)>0$

| Resonance Eduventures Pvt. Ltd. |
| ---: | ---: |
| CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 |
| Tel. No. : 0744-3192222, 3012222, 3022222 \| Toll Free : 18002002244 | To Know more : sms RESO at 56677 |
| Website : www.resonance.ac.in \| Email : contact@resonance.ac.in |

(iii) $f(x)$ का परिसर R है।

$$
\begin{aligned}
\text { क्योंकि } f\left(-\frac{\pi}{2}\right) & \Rightarrow-\infty \\
f\left(\frac{\pi}{2}\right) & \Rightarrow \infty
\end{aligned}
$$

49. A circle S passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^{2}+y^{2}=16$ and $x^{2}+y^{2}=1$. Then
(A) radius of S is 8
(B) radius of S is 7
(C) centre of S is $(-7,1)$
(D) centre of S is $(-8,1)$

एक वृत्त S बिन्दु $(0,1)$ से गुजरता है तथा वृत्तों $(x-1)^{2}+y^{2}=16$ एवं $x^{2}+y^{2}=1$ के लम्बकोणीय (orthogonal) है, तब
(A) S की त्रिज्या (radius) 8 है
(B) S की त्रिज्या 7 है
(C) S का केन्द्र $(-7,1)$ है
(D) S का केन्द्र $(-8,1)$ है

Ans. (BC)
Sol. Let the cirlce be
$x^{2}+y^{2}+2 g x+2 f y+c=0$
given circles
$x^{2}+y^{2}-2 x-15=0$
$x^{2}+y^{2}-1=0$
(1) \& (2) are orthogonal

$$
\begin{array}{ll}
\Rightarrow & -g+0=\frac{c-15}{2} \\
& 0+0=\frac{c-1}{2} \\
\Rightarrow & c=1 \& g=7
\end{array}
$$

so the cirle is
$x^{2}+y^{2}+14 x+2 f y+1=0 \quad$ it passes thrgouh

$$
\begin{aligned}
(0,1) & \Rightarrow \quad 0+1+0+2 f+1=0 \\
& \quad f=-1 \\
& \text { Centre }(-7,1) \\
& \text { radius }=7
\end{aligned}
$$

Hindi. माना कि वृत्त
$x^{2}+y^{2}+2 g x+2 f y+c=0$
दिये गये वृत्त
$x^{2}+y^{2}-2 x-15=0$
$x^{2}+y^{2}-1=0$
(1) और (2) लाम्बिक हैं।

$$
\begin{array}{r}
\Rightarrow \quad-g+0=\frac{c-15}{2} \\
0+0=\frac{c-1}{2}
\end{array}
$$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

$$
\Rightarrow \quad c=1 \& g=7
$$

इसलिए वृत्त है।
$x^{2}+y^{2}+14 x+2 f y+1=0$ यह गुजरता है ।

$$
\begin{aligned}
(0,1) & \Rightarrow \quad 0+1+0+2 f+1=0 \\
& \Rightarrow \quad f^{2}=-1 \\
& x^{2}+y^{2}+14 x-2 y+1=0
\end{aligned}
$$

केन्द्र $(-7,1)$
त्रिज्या $=7$
50. Let $a \in R$ and let $f: R \rightarrow R$ be given by $f(x)=x^{5}-5 x+a$. Then
(A) $f(x)$ has three real roots if $a>4$
(B) $f(x)$ has only one real root if $a>4$
(C) $f(x)$ has three real roots if $a<-4$
(D) $\mathrm{f}(\mathrm{x})$ has three real roots if $-4<a<4$

मानाकि $a \in R$ तथा $f: R \rightarrow R$ निम्न के द्वारा $f(x)=x^{5}-5 x+a$ परिभाषित है। तब
(A) $a>4$ के लिए $f(x)$ के तीन वास्तविक मूल (real; roots) हैं।
(B) $a>4$ के लिए $f(x)$ का केवल एक वास्तविक मूल है।
(C) $a<-4$ के लिए $f(x)$ के तीन वास्तविक मूल है।
(D) $-4<a<4$ के लिये $f(x)$ के तीन वास्तविक मूल है ।

Ans. (BD)
Sol. $f(x)=x^{5}-5 x+a=0$

$$
\begin{align*}
& x^{5}-5 x=-a \\
& x\left(x^{4}-5\right)=-a \\
& x\left(x^{2}-\sqrt{5}\right)\left(x^{2}+\sqrt{5}\right)=-a \\
& x\left(x-5^{1 / 4}\right)\left(x+5^{1 / 4}\right)\left(x^{2}+\sqrt{5}\right)=-a \tag{1}
\end{align*}
$$

$f^{\prime}(x)=5 x^{4}-5=0$
$\left(x^{2}-1\right)\left(x^{2}+1\right)=0$
$(x-1)(x+1)\left(x^{2}+1\right)=0$

SECTION - 2 : (One Integer Value Correct Type)

खण्ड-2 : (एक पूर्णांक मान सही प्रकार)
This section contains 10 questions. Each question, when worked out will result in one integer from 0 to 9 (both inclusive).
इस खण्ड में 10 प्रश्न हैं। प्रत्येक प्रश्न को हल करने पर परिणाम 0 से 9 (दोनों शामिल) के बीच का एक पूर्णांक मान होगा।
51. The slope of the tangent to the curve $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$ at the point $(1,3)$ is वक्र (curve) $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$ के बिन्दु $(1,3)$ पर स्पर्शरेखा (tangent) की प्रवणता (slope) है।
Ans. (8)
Sol. $\quad\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$
$2\left(y-x^{5}\right)\left(\frac{d y}{d x}-5 x^{4}\right)=\left(1+x^{2}\right)^{2}+2 x\left(1+x^{2}\right) 2 x$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
at point बिन्दु $(1,3)$ पर

$$
\begin{aligned}
\therefore & 2(3-1)\left(\frac{d y}{d x}-5\right)=4+8 \\
& \frac{d y}{d x}-5=\frac{12}{4}=3 \\
& \frac{d y}{d x}=8
\end{aligned}
$$

52. Let $f:[0,4 \pi] \rightarrow[0, \pi]$ be defined by $f(x)=\cos ^{-1}(\cos x)$. The number of points $x \in[0,4 \pi]$ satisfying the equation $f(x)=\frac{10-x}{10}$ is

मानाकि $\mathrm{f}:[0,4 \pi] \rightarrow[0, \pi], f(x)=\cos ^{-1}(\cos x)$ के द्वारा परिभाषित है। तब $[0,4 \pi]$ में समीकरण $f(x)=\frac{10-x}{10}$ को संतुष्ट करने वाले बिन्दुओं की संख्या है।
Ans. (3)
Sol. $f(x)=\left(\sin ^{-1}\right) x \in[0,4 \pi]$
\& और $\mathrm{f}(\mathrm{x})=\frac{10-\mathrm{x}}{10}=1-\frac{\mathrm{x}}{10}$

so, 3 solution. इसलिए 3 हल
53. The largest value of the non-negative integer a for which $\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4}$ is एक अऋणात्मक (non-negative) पूर्णांक a जिसके लिए निम्न $\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4}$ सत्य है, तो a का अधि ाकतम मान है।
Ans. (0)

Sol. $\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4}$
$\Rightarrow \quad \lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{x+\sqrt{x}}=\frac{1}{4}$
Hence $\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{(x-1)+\sin (x-1)}\right\}^{1+\sqrt{x}}=\frac{1}{4}$
put $x=1+h$,
$\lim _{h \rightarrow 0}\left\{\frac{-a h+\sinh }{h+\sinh }\right\}^{1+\sqrt{1+h}}=\frac{1}{4}$
or $\quad \frac{-\mathrm{a}+1}{2}=\frac{1}{2} \quad$ or $-\frac{1}{2} \Rightarrow \quad \mathrm{a}=0 \quad$ or 2
But at $a=2, \frac{-a h+\sinh h}{h+\sinh }$ tends to negative value

So correct Answer is a = 0

However a = $\mathbf{2}$ may be accepted if this is not considered
Hindi. $\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4}$
$\Rightarrow \quad \lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{x+\sqrt{x}}=\frac{1}{4}$
अतः $\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{(x-1)+\sin (x-1)}\right\}^{1+\sqrt{x}}=\frac{1}{4}$
$x=1+h$, रखने पर
$\lim _{h \rightarrow 0}\left\{\frac{-a h+\sinh }{h+\sinh }\right\}^{1+\sqrt{1+h}}=\frac{1}{4}$

या $\frac{-\mathrm{a}+1}{2}=\frac{1}{2} \quad$ या $-\frac{1}{2} \Rightarrow \quad \mathrm{a}=0 \quad$ या 2
परन्तु $\mathbf{a}=\mathbf{2}$ पर $\frac{-\mathrm{ah}+\sinh }{\mathrm{h}+\sinh }$ ऋणात्मक मान की ओर अग्रसर है।
इसलिए सही उत्तर $\mathbf{a}=0$
फिर भी $a=2$ स्वीकार्य हो सकता है यदि इसे माना नहीं जाये

| Resonance Eduventures Pvt. Ltd. |
| ---: | ---: |
| CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 |
| Tel. No. : 0744-3192222, 3012222, 3022222 \| Toll Free : 18002002244 | To Know more : sms RESO at 56677 |
| Website : www.resonance.ac.in \| Email : contact@resonance.ac.in |

54. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be respectively given by $f(x)=|x|+1$ and $g(x)=x^{2}+1$. Define $h: R \rightarrow R$ by $h(x)=\left\{\begin{array}{lll}\max & \{f(x), g(x)\} & \text { if } x \leq 0, \\ \min & \{f(x), g(x)\} & \text { if } x>0 .\end{array}\right.$ The number of points at which $h(x)$ is not differentiable is माना कि $f: R \rightarrow R$ तथा $g: R \rightarrow R$ क्रमशः $f(x)=|x|+1$ तथा $g(x)=x^{2}+1$ द्वारा परिभषित है। माना कि फलन $h: R \rightarrow R, h(x)=\left\{\begin{array}{lll}\text { अधिकतम } & \{f(x), g(x)\} & \text { यदि } x \leq 0, \\ \text { न्यूनतम } & \{f(x), g(x)\} & \text { यदि } x>0 .\end{array}\right.$ द्वारा परिभाषित है। जहाँ $h(x)$ अवकलनीय (differentiable) नहीं है, उन बिन्दुओं की संख्या है।
Ans. (3)
Sol. $f(x)=|x|+1=\left\{\begin{array}{cc}x+1 & x \geq 0 \\ -x+1 & x<0\end{array}\right.$
$g(x)=x^{2}=1$

Number of Non-differential points 3.
अवलनीय नहीं होने वाले बिन्दुओं की संख्या 3 .
55. For a point P in the plane, let $d_{1}(P)$ and $d_{2}(P)$ be the distance of the point P from the lines $x-y=0$ and $x+y=0$ respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_{1}(P)+d_{2}(P) \leq 4$, is
समतल में स्थित किसी बिन्दु P से रेखाओं $x-y=0$ तथा $x+y=0$ की दूरी क्रमशः $d_{1}(P)$ तथा $d_{2}(P)$ है। यदि क्षेत्र R उन सभी बिन्दुओं P से बना है जो प्रथम चतुर्थांश (quadrant) में स्थित है तथा $2 \leq d_{1}(P)+d_{2}(P) \leq 4$ को संतुष्ट करते है, तब क्षेत्र R का क्षेत्रफल है।
Ans. (6)
Sol. let $p(h, k)$

$$
\begin{aligned}
& 2 \leq\left|\frac{h-k}{\sqrt{2}}\right|+\left|\frac{h+k}{\sqrt{2}}\right| \leq 4 \\
& \Rightarrow \quad 2 \sqrt{2} \leq|h-k|+|h+k| \leq 4 \sqrt{2} \\
& \text { if } \quad h \geq k
\end{aligned}
$$

$\Rightarrow \quad 2 \sqrt{2} \leq x-y+x+y \leq 4 \sqrt{2} \quad$ or $\quad \sqrt{2} \leq x \leq 2 \sqrt{2}$
similarly when $\mathrm{k}>\mathrm{h}$
we have $\sqrt{2} \leq y \leq 2 \sqrt{2}$
The required area $=(2 \sqrt{2})^{2}-(\sqrt{2})^{2}=6$.
Hindi. माना $p(h, k)$

$2 \leq\left|\frac{h-k}{\sqrt{2}}\right|+\left|\frac{h+k}{\sqrt{2}}\right| \leq 4$
$\Rightarrow \quad 2 \sqrt{2} \leq|h-k|+|h+k| \leq 4 \sqrt{2}$
यदि $\quad h \geq k$
$\Rightarrow \quad 2 \sqrt{2} \leq x-y+x+y \leq 4 \sqrt{2} \quad$ or $\quad \sqrt{2} \leq x \leq 2 \sqrt{2}$
इसप्रकार $\mathrm{k}>\mathrm{h}$

यहाँ $\sqrt{2} \leq \mathrm{y} \leq 2 \sqrt{2}$
अभीष्ट क्षेत्रफल $=(2 \sqrt{2})^{2}-(\sqrt{2})^{2}=6$.
56. Let $n_{1}<n_{2}<n_{3}<n_{4}<n_{5}$ be positivie integers such that $n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=20$. Then the number of such distinct arrangements $\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4}, \mathrm{n}_{5}\right)$ is
यदि $\mathrm{n}_{1}<\mathrm{n}_{2}<\mathrm{n}_{3}<\mathrm{n}_{4}<\mathrm{n}_{5}$ इस प्रकार के धनात्मक पूर्णांक है जिनके लिए $\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\mathrm{n}_{4}+\mathrm{n}_{5}=20$ है। तब ऐसे विभिन्न विन्यासों (distinct arrangements) $\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4}, \mathrm{n}_{5}\right)$ की कुल संख्या है।
Ans. (7)
Sol. $n_{2}=n_{1}+t_{1}+1$
$n_{3}=n_{2}+t_{2}+1$
$n_{4}=n_{3}+t_{3}+1$
$\mathrm{n}_{5}=\mathrm{n}_{4}+\mathrm{t}_{4}+1$
The given equation becomes
$5 n_{1}+4 \mathrm{t}_{1}+3 \mathrm{t}_{2}+2 \mathrm{t}_{3}+\mathrm{t}_{4}=10$
where $n_{1} \geq 1 ; t_{1} \geq 0$
$\mathrm{n}_{1}=\mathrm{t}_{0}+1 \Rightarrow 5 \mathrm{t}_{0}+4 \mathrm{t}_{1}+3 \mathrm{t}_{2}+2 \mathrm{t}_{3}+\mathrm{t}_{4}=5$
$t_{0}=1$ will yield only 1 solution.
so $t_{0}=0$,
$4 t_{1}+3 t_{2}+2 t_{3}+t_{4}=5$.
$t_{1}=0=t_{2}$. there will be 3 solution
$t_{1}=0, t_{2}=1$ will yield 2 solution.
$t_{1}=1, t_{2}$ must be zero 1 solution.
Hence in total there will be 7 solution.

Alternative:

\mathbf{n}_{1}	\mathbf{n}_{2}	\mathbf{n}_{3}	\mathbf{n}_{4}	\mathbf{n}_{5}
1	2	3	4	10
1	2	3	5	9
1	2	3	6	8
1	2	4	5	7
1	2	4	6	8
1	3	4	6	7
2	3	4	5	6

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Hindi. $\mathrm{n}_{2}=\mathrm{n}_{1}+\mathrm{t}_{1}+1$
$n_{3}=n_{2}+t_{2}+1$
$\mathrm{n}_{4}=\mathrm{n}_{3}+\mathrm{t}_{3}+1$
$\mathrm{n}_{5}=\mathrm{n}_{4}+\mathrm{t}_{4}+1$
दी गई समीकरण से
$5 \mathrm{n}_{1}+4 \mathrm{t}_{1}+3 \mathrm{t}_{2}+2 \mathrm{t}_{3}+\mathrm{t}_{4}=10 \quad$ जहाँ $\mathrm{n}_{1} \geq 1 ; \mathrm{t}_{1} \geq 0$
$\mathrm{n}_{1}=\mathrm{t}_{0}+1 \Rightarrow 5 \mathrm{t}_{0}+4 \mathrm{t}_{1}+3 \mathrm{t}_{2}+2 \mathrm{t}_{3}+\mathrm{t}_{4}=5$
$\mathrm{t}_{0}=1$ केवल 1 हल होगा।
इसलिए $t_{0}=0$,

$$
4 t_{1}+3 t_{2}+2 t_{3}+t_{4}=5 .
$$

$t_{1}=0=t_{2}$. के लिए 3 हल
$\mathrm{t}_{1}=0, \mathrm{t}_{2}=1$ के लिए 2 हल
$\mathrm{t}_{1}=1, \mathrm{t}_{2}$ अवश्य शून्य होगा के लिए 1 हल
अतः कुल 7 हल
Alternative: वैकल्पिक हल :

\mathbf{n}_{1}	\mathbf{n}_{2}	\mathbf{n}_{3}	\mathbf{n}_{4}	\mathbf{n}_{5}
1	2	3	4	10
1	2	3	5	9
1	2	3	6	8
1	2	4	5	7
1	2	4	6	8
1	3	4	6	7
2	3	4	5	6

57. The value of $\int_{0}^{1} 4 x^{3}\left\{\frac{d^{2}}{d x^{2}}\left(1-x^{2}\right)^{5}\right\} d x$ is

निम्न $\int_{0}^{1} 4 x^{3}\left\{\frac{d^{2}}{d x^{2}}\left(1-x^{2}\right)^{5}\right\} d x$ का मान है :
Ans. (2)
Sol. $\left.\quad 4 x^{3} \cdot \frac{d}{d x}\left(1-x^{2}\right)^{5}\right|_{0} ^{1}-12 \int_{0}^{1} x^{2} \cdot \frac{d}{d x}\left(1-x^{2}\right)^{5} d x$
$=-12\left[\left(x^{2} \cdot\left(1-x^{2}\right)^{5}\right)_{0}^{1}-2 \int_{0}^{1} x \cdot\left(1-x^{2}\right)^{5} d x\right]=12 \int_{0}^{1} 2 x\left(1-x^{2}\right)^{5} d x=-12 \int_{1}^{0} t^{5} d t=\frac{12}{6}\left(t^{6}\right)_{0}^{1}=2$.
Alternative : वैकल्पिक हल :

$$
\begin{aligned}
& \int_{0}^{1} 4 x^{3}\left\{\frac{d^{2}}{d x^{2}}\left(1-x^{2}\right)^{5}\right\} d x \\
& \qquad \frac{d}{d x}\left(\frac{d\left(1^{*}-x^{2}\right)^{5}}{d x}\right)=\frac{d}{d x}\left(5\left(1-x^{2}\right)^{4}(-3 x)\right)
\end{aligned}
$$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

$$
\begin{aligned}
& =-10 \frac{d}{d x}\left(x\left(1-x^{2}\right)^{4}\right) \\
& =-10\left[\left(1-x^{2}\right)^{4}+x^{4}\left(1-x^{2}\right)^{3}(-2 x)\right] \\
& =\left[-10\left(1-x^{2}\right)^{3}\left[1-x^{2}-8 x^{2}\right]\right.
\end{aligned}
$$

Hence Integral अतः समाकल
$=-40 \int_{0}^{1} x^{3}\left(1-x^{2}\right)^{3}\left(1-9 x^{2}\right) d x \quad$ Put $x=\sin \theta$ रखने पर
$=-40 \int_{0}^{\pi / 2} \sin ^{3} \theta \cos ^{7} \theta d \theta+360 \int_{0}^{1} \sin ^{5} \theta \cos ^{7} \theta d \theta$
$=-40.1 \cdot \frac{2 \cdot 6 \cdot 4.2}{10 \cdot 8 \cdot 6 \cdot 4.2}+360 \cdot \frac{4 \cdot 2 \cdot 6 \cdot 4.2}{12 \cdot 10 \cdot 8 \cdot 6 \cdot 4 \cdot 2}=-1+3=2$ Ans.
58. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, where p, q and r are scalars, then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is माना कि \vec{a}, \vec{b} तथा \vec{c} तीन असमतलीय (non-coplanar) इकाई सदिश है, जिनके प्रत्येक युग्म के मध्य का कोण $\frac{\pi}{3}$ है। यदि $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\mathrm{p} \overrightarrow{\mathrm{a}}+\mathrm{q} \overrightarrow{\mathrm{b}}+\mathrm{r} \overrightarrow{\mathrm{c}}$ जहाँ p, q एवम् r अदिश (scalars) है, तब $\frac{\mathrm{p}^{2}+2 \mathrm{q}^{2}+\mathrm{r}^{2}}{\mathrm{q}^{2}}$ का मान है :

Ans. (4)
Sol. $p \vec{a}+q \vec{b}+r \vec{c}=a \times b+b \times c$
Taking dot product with $\vec{a}, \vec{b}, \vec{c}$ we get

$$
\begin{align*}
& p+\frac{q}{2}+\frac{r}{2}=\left[\begin{array}{ll}
a & b \\
c
\end{array}\right] \tag{1}\\
& \frac{p}{2}+q+\frac{r}{2}=0 \tag{2}\\
& \frac{p}{2}+\frac{q}{2}+r=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \tag{3}
\end{align*}
$$

(1) \& (3) $\Rightarrow p=r \& q=-p$

$$
\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}=\frac{p^{2}+2 p^{2}+p^{2}}{p^{2}}=4 \text { Ans. }
$$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

Hindi. $p \vec{a}+q \vec{b}+r \vec{c}=a \times b+b \times c$
$\vec{a}, \vec{b}, \vec{c}$ के साथ अदिश गुणन लेने पर

$$
\begin{align*}
& p+\frac{q}{2}+\frac{r}{2}=\left[\begin{array}{ll}
a & b
\end{array}\right] \tag{1}\\
& \frac{p}{2}+q+\frac{r}{2}=0 \tag{2}\\
& \frac{p}{2}+\frac{q}{2}+r=\left[\begin{array}{ll}
a & b
\end{array}\right] \tag{3}
\end{align*}
$$

(1) और (3) $\Rightarrow p=r \& q=-p$

$$
\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}=\frac{p^{2}+2 p^{2}+p^{2}}{p^{2}}=4 \text { Ans. }
$$

59. Let a, b, c be positive integers such that $\frac{b}{a}$ is an integer. If a, b, c are in geometric progression and the arithmetic mean of a, b, c is $b+2$, then the value of $\frac{a^{2}+a-14}{a+1}$ is

माना कि a, b, c धनात्मक पूर्णा क (positive integers) है तथा $\frac{b}{a}$ एक पूर्णाक है। यदि a, b, c गुणोत्तर श्रेणी (geometric progression) में है तथा a, b, c का समान्तर माध्य (arithmetic mean) $b+2$ है, तो $\frac{a^{2}+a-14}{a+1}$ का मान है।

Ans. (4)
Sol. Let $b=a r, c=a r^{2} \Rightarrow r$ is Integers
Also $\frac{a+a r+a r^{2}}{3}=a r+2 \Rightarrow a+a r^{2}=2 a r+6$
$\Rightarrow \quad a(r-1)^{2}=6 \quad \Rightarrow \quad r$ must be 2 and $a=6$.
Thus $\frac{a^{2}+a-14}{a+1}=\frac{36+6-14}{7}=4$ Ans.
Hindi. माना $b=a r, c=a r^{2} \Rightarrow r$ पूर्णांक है।
तथा $\frac{a+a r+a r^{2}}{3}=a r+2 \Rightarrow a+a r^{2}=2 a r+6$
$\Rightarrow \quad \mathrm{a}(\mathrm{r}-1)^{2}=6 \quad \Rightarrow \quad \mathrm{r}, 2$ होगा और $\mathrm{a}=6$.
अत: $\frac{a^{2}+a-14}{a+1}=\frac{36+6-14}{7}=4$ Ans.
60. Let $\mathrm{n} \geq 2$ be an integer. Take n distinct points on a circle and join each pair of points by a line segment. Colour the line segment joining every pair of adjacent points by blue and the rest by red. If the number of red and blue line segments are equal, then the value of n is

माना कि $n \geq 2$ एक पूर्णाक है। एक वृत्त पर n विभिन्न बिन्दु लेकर उन बिन्दुओं के प्रत्येक युग्म को रेखाखण्ड से जोडे। इन रेखाखण्डों में से आसन्न बिन्दुओं (adjacent points) को जोड़ने वाले प्रत्येक रेखाखण्ड को नीला तथा अन्य रेखाखण्डों को लाल रंग दें। यदि लाल व नीले रेखाखण्डों की संख्या समान है तो n का मान है :

Ans. (5)
Sol. Number of adjacent lines $=n$
Number of line segment joining non-adjacent points is ${ }^{n} C_{2}-n$.
Now, $\quad \mathrm{n}=\left({ }^{\mathrm{n}} \mathrm{C}_{2}-\mathrm{n}\right) \Rightarrow 2 \mathrm{n}=\frac{\mathrm{n}(\mathrm{n}-1)}{2} \Rightarrow \mathrm{n}=0,5$

But $\quad n \geq 2$. so, $n=5$.
Hindi. आसन्न रेखाओं की संख्या $=n$
जो आसन्न बिन्दु नहीं है उनको मिलाने वाली रेखाखण्डो की संख्या ${ }^{n} \mathrm{C}_{2}-\mathrm{n}$.

अब,

$$
\mathrm{n}=\left({ }^{\mathrm{n}} \mathrm{C}_{2}-\mathrm{n}\right) \Rightarrow 2 \mathrm{n}=\frac{\mathrm{n}(\mathrm{n}-1)}{2} \Rightarrow \mathrm{n}=0,5
$$

परन्तु $n \geq 2$. इसलिए, $n=5$.

Resonance Eduventures Pvt. Ltd.

Appropriate way of darkening the bubble for your answer to be evaluated ： आपके उत्तर के मूल्यांकन के लिए बुलबुले को काला करने का उपयुक्त तरीका ：

Answer will not be evaluated no marks，no negative marks
उत्तर का मूल्यांकन नहीं होगा－ कोई अंक नहीं，कोई ऋणात्मक अंक नहीं

Figure－1 ：Correct way of bubbling for valid answer and a few examples of invalid answer． Any other form of partial marking such as ticking or crossing the bubble will be considered invalid．

चित्र－1 ：वैद्य उत्तर के लिए बुलबुला भरने का सही तरीका और अवैद्य उत्तरों के कुछ उदाहरण। आंशिक अंकन के अन्य तरीके जैसे बुलबुले को टिक करना या क्रॉस करना गलत होगा।

Figure－2 ：Correct way of Bubbling your Roll Number on the ORS．（Example Roll Number ：5045231） चित्र－2 ：ओ．आर．एस．（ORS．）पर आपके रोल नम्बर के बबल को भरने का सही तरीका（उदाहरण रोल नम्बर ：5045231）

Name of the Candidate

परीक्षार्थी का नाम
\square
I have read all instructions and shall abide by them．
मैंने सभी निर्देशों का पढ़ लिया है और मैं उनका अवश्य पालन करूँगा／करूँगी।

Signature of the Candidate परीक्षार्थी के हस्ताक्षर

Roll Number
रोल नम्बर

I have verified all the information filled by the candidate．
परीक्षार्थी द्वारा भरी गई सारी जानकारी को मैनें जाँच लिया है।

Signature of the Invigilator परीक्षक के हस्ताक्षर

Resonance Eduventures Pvt．Ltd．

CORPORATE OFFICE ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005
Tel．No．：0744－3192222，3012222， 3022222 ｜Toll Free ： 18002002244 ｜To Know more ：sms RESO at 56677 Website ：www．resonance．ac．in｜Email ：contact＠resonance．ac．in
This solution was download from Resonance JEE ADVANCED 2014 Solution portal

[^0]: This solution was download from Resonance JEE ADVANCED 2014 Solution portal

[^1]: This solution was download from Resonance JEE ADVANCED 2014 Solution portal

